数学建模论文第1篇一、数学教材设计存在缺陷现行高中数学教材将数学建模内容散布于各数学知识教学单元内容之中。此种课程设计固然便于学生及时运用所学数学知识解决实际问题,但却存在诸多弊端。将数学建模内容分置下面是小编为大家整理的数学建模论文9篇,供大家参考。
数学建模论文 第1篇
一、数学教材设计存在缺陷
现行高中数学教材将数学建模内容散布于各数学知识教学单元内容之中。此种课程设计固然便于学生及时运用所学数学知识解决实际问题,但却存在诸多弊端。将数学建模内容分置于各数学知识教学单元的课程设计遮蔽了数学建模内容之间所固有的内在联系,致使教师难以清晰地把握高中数学建模课程内容的完整脉络,难以准确地掌握高中数学建模课程内容的总体教学要求,难以有效地实施高中数学建模课程内容的整体性教学。而学生在理解和处理数学知识教学内容单元中的具体数学建模问题时,既易受到应运用何种数学知识与方法的暗示,也会制约其综合运用数学知识方法解决现实问题。从而势必影响学生运用数学知识方法建立数学模型的灵活性与迁移性,降低数学建模学习的认知弹性。
二、高中数学建模课程师资不足
许多高中数学教师缺少数学建模的理论熏陶和实践训练,致使其数学应用意识比较淡漠,其数学建模能力相对不足,从而制约了高中数学建模教学的效果。高中数学教师所普遍存在的上述认识偏差、实践误区以及应用意识与建模能力方面的欠缺,严重阻碍了高中数学建模课程目标的顺利实现。
三、学生学习数学建模存在困难
相当多数高中学生的数学建模意识和数学建模能力令人担忧。普遍表现为:难以对现实情境进行深层表征、要素提取与问题归结;
难以对现实问题所蕴涵的数据进行充分挖掘、深邃洞察与有效处理;
难以对现实问题作出适当假设;
难以对现实问题进行模型构建;
难以对数学建模结果进行有效检验与合理解释等。
1.编写独立成册的高中数学建模教材。将高中数学建模内容集中编写为独立成册的高中数学建模教材。系统介绍数学建模的基本概念、步骤与方法并积极吸纳丰富的数学建模素材且对典型的数学建模问题依步骤、分层次解析。
2.加强高中数学建模专题的师资培训。
高中数学教师是影响高中数学建模课程实施的关键因素。他们对数学建模的内涵及其教育价值的理解、所具有的数學应用意识和数学建模能力水平等均会在某种程度上影响高中数学建模教学的开展与效果。目前高中数学建模师资尚难完全胜任高中数学建模课程的教学,绝大多数高中数学教师在其所参加的新课程培训中并未涉及数学建模及其教学内容。因此应有计划地组织实施针对高中数学建模专题的教师培训。
3.探索高中学生数学建模的认知规律。
数学建模是需要学生深度参与的一项较为复杂的认知活动过程。在数学建模实践中,多数学生确实遇到了较大的困难与挑战,需要教师的科学指导,这就要求教师必须以深刻把握学生数学建模的认知机制与学习规律为前提。
数学建模论文 第2篇
(1)大致了解数学建模论文写作时应包含哪些内容
(2)每部分内容都应写些什么
(3)汲取他写作与处理问题的成功之处,以便将这些优点运用于我以后的论文写作中
(4)总结这篇论文写作与处理问题过程中的败笔,提醒我注意在写作论文时不要犯类似错误
所以,在下面的学习心得中将主要涉及以上4个方面的内容。
摘要:简明扼要地指出了处理问题的"方法途径并给出作答,起到了较好的总结全文,理清条理的作用。让读者对以下论述有1个总体印象,而且对于本题的答案用图表形式给出,清晰明了
问题重述:(略)
问题背景:
交待问题背景,说明处理此问题的意义和必要性。
优点:叙述详尽,条理清楚,论证充分
缺点:前两段过于冗长,可作适当删节
问题分析:
进1步阐述解决此问题的意义所在,分析了问题,简述要解决此问题需要哪些条件和大体的解决途径
优点:条理比较清晰,论述符合逻辑,表达清楚
缺点:似乎不够详细,尤其是第3段有些过于概括。
模型的假设与约定:
共有8条比较合理的假设
优点:假设有依据,合情合理。比如第3条对上座率的假设,参考了上届奥运会的情况并充分考虑了我国国情,客观真实。第8条假设用了分块规划和割补的方法,估计面积形状比较合理,而且达到了充分花剑问题的作用。
缺点:有些假设阐述不太清楚也存在不合理之处,第4条假设中面积在50-100之间,下面的假设应该是介于50-100之间的数,假设为最小的50平方米,有失1般性。第6条假设中,假设MS最大营业额为20万,没有说明是多长时间内的,而且此处没有对下文提到的LMS作以说明。
符号说明及名词定义
优点:比较详细清楚,考虑周全,而且较合理地将定性指标数量化。
缺点:有些地方没有标注量纲,比如A和B的量纲不明确。
模型建立与求解
6.1问题1:
对所给数据惊醒处理和统计,得出规律,找到联系。
优点:统计方法合理,所统计数据对解决问题确实必不可少,而且用图表和条形图的方式反映不同量的变化趋势,图文并茂,叙述清楚而且简明扼要,除了对数据统计情况进行报告以外,还就他们之间相关量之间的关系进行了详细阐述,使数据统计更具实效性。
6.2问题2:
6.2.1最短路的确定
为确定最短路径又提出了1系列假设并阐述了理由,在这些假设下规定了最短路径
优点:假设有根据,理由合情合理
缺点:第4条中假设观众消费是单向的,虽然简化了问题但有失1般性,事实上观众往返经过商业区消费的概率是相差比较大的,我认为应改为假设观众在往返过程中消费且仅消费1次。
6.2.2计算人流量的追踪模型
给出计算人流量的方法,并计算了各区人流量,并对计算结果进行了分析。
优点:分情况讨论,并且取了两个典型的具有代表性的例子进行了具体阐述,没有全部罗列所有数据的计算过程,使文章清晰简明,不至于繁冗拖沓,这在以后我们写论文是极其值得借鉴。对结果的分析有针对性,合情合理而且用条形图直观地反映了人流量的数值和各地区间的差异。
缺点:分析还不够详细,考虑因素还不够周到。
6.3问题3
进1步对问题作以简化,将问题的解决最终归结为1个焦点,并对解决这个问题所需确定的因素进行了讨论,最后得出结论。
6.3.1商区消费额的确定
阐述了为什么要计算这个量,计算这个量对解决问题有什么至关重要的作用并且采用了Huff模型并且结合本问题的具体情况来求解数据。
优点:论证充分合理且模型和经济学知识应用恰当,所得数据有效可信,考虑周到而不繁杂,抓住了事物的主要矛盾,而且对Huff模型的解释较为充分。
缺点:对于各商业区的总消费额我们更看重数量而文中用条形图的方式却着重体现了各地区之间的数量差异,有喧宾夺主之嫌,改称图表形式可以更好地反映数据量的值
6.3.2各个商区MS数量的概略确定
确定了确定MS个数的方案,在不失1般性的前提下对问题进行进1步简化,缩小解决问题的范围并对问题进行了求解
优点:简洁明了,论述合理。
6.3.3
引入了1个重要的确定数量的参数,且对解决问题方法的合理性及此数据对问题的解的影响及行了数值分析和理论论证,提出了改进方案,得出结果,并对结果进行分析。
优点:条理清晰,逻辑严谨,论证充分,详尽而不冗长,使本篇论文的精华部分。分析合理且充分考虑到了实际情况使结果更具可信性。
6.3.4LMS和MS的分配情况讨论
对2者关系提出了几条假设。
优点:论述充分,假设合理而且用图表反映结果,简单明了,情况考虑全面周到。
6.4问题4
分析了方法的科学性和结果的贴近实际性
优点:条理清晰,分析有依据,措辞严谨,逻辑严密而且对前面所述方法进行了分别阐述。这使得对方法科学性的论述更加充分可信。对贴近事实性的论述,理论和事实相结合,叙述数据来源,并采用举例论证法论证结果的贴近实际性。
缺点:结果的贴近实际性的论证中,应详细罗列1下数据的来源,也许更加可信。
模型的进1步讨论
为简化抽象现实1边建构模型而忽略掉的1些因素进行了考虑,对于1些可能影响讨论结果的因素给出了算法和解决方案
优点:考虑全面,善于抓住主要矛盾,表述简明客观。
模型检验
与某些近似且已妥善解决的问题进行了比较,用事实说明处理方案的正确性。
优点:采用了较好的参照对象,采用图像对比的方法,使问题清晰明了。
缺点:应该简述1下雅典奥运会采用的方案是成功的,否则比照就失去了意义,还有由于举办地点不同,地区上的差异使这种单纯与雅典奥运会进行得比较稍显单薄。
模型优缺点
总结模型建立并解决问题的过程中的优点和缺点
优点:简明扼要,客观实在
附录(略)
参考文献
数学建模论文 第3篇
摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。
关键词:数学建模;
高等数学;
教学研究
一、引言
建模思想使高等数学教育的基础与本质。从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。
二、高等数学教学现状
高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。
三、将数学建模思想融入高等数学的重要性
第一,能够激发学生学习高数的兴趣。建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。例如,在讲解微分方程时,可以引入一些历史上的一些著名问题,如以Vanmeegren伪造名画案为代表的赝品鉴定问题、预报人口增长的Malthus模型与Logistic模型等。
这样,才能激发出学生对高等数学的兴趣,并积极投入高等数学的学习中来。
第二,能够提高学生的数学素质。社会的高速发展不断要求学生向更全面、更高素质的方向发展。这就要求学生不仅要懂得专业知识,还要能够将专业知识运用到实际生活中,拥有解决问题的头脑和实际操作的技能。这些其实都可以通过建模思想在高等数学课堂中实现。高等数学的包容性、逻辑性都很强。将建模思想融入高等数学的教学中,既能提高学生的数学素质,还能锻炼学生综合分析问题,解决问题的能力。通过理论与生活实践相结合,达到社会发展的要求,提高自身的社会竞争力。
第三,能够培养学生的综合创新能力。“万众创新”不仅仅是一个口号,而应该是现代大学生应该具备的一种能力。将数学建模思想融入高等数学教学中,能让大学生从实际生活出发,多方位、多角度考虑问题,提高学生的创新能力。学生的潜力是可以在多次的建模活动中挖掘出来的。因此教师应多组织建模活动,让学生从实际生活中组建材料,不断创新思维,找到解决问题的方式与方法。
四、将建模思想融入高等数学的实践方法
第一,转变教学理念。改变传统教学思想与教育方式,提高学生建模的积极性,增强学生对建模方式的认同。教师不能只是单一的讲解理论知识,还需要引导学生亲自体验,从互动的教学过程中,理解建模思想的重要性。
第二,在生活问题中应用建模思想。其实,很多日常生活中的很多例子,都是可以解决课堂上的问题的。数学是来源于生活的。作为教师,应该主动引领学生参与实践活动,将课本的知识尽量与日常问题联系到一起,发动学生主动用建模思想解决问题,提高创新能力,从不同的角度,以不同的方式提高解决问题的能力。例如,学校要组织元旦晚会,需要学生去采购必需品。超市有多种打折的方式,这时候教师就可以引导学生使用建模思想,要求去学生以模型来分析各种打折方式的优缺点,并选择最优惠的方式买到最优质的晚会用品。这样学生才会发现建模的乐趣,并了解如何在生活案例中应用建模思想。
第三,不断巩固和提高建模应用。数学建模思想融入生活实践不是一蹴而就的,而是一个不断实践、循序渐进的过程。人们也不能为了应用建模思想而将日常生活生拉硬套。教师也应该尽可能多地搜集生活中的案例,将建模思想与生活实践更灵活地联系在一起。不断地由浅入深,将建模思想牢牢地印在学生的脑海中。并根据每个学生的独特性,不断开发学生的创新潜力和发散思维能力,提高逻辑思维能力和空间想象力,在实践中巩固深化建模思想。五、结束语综上所述,将建模思想融入高等数学教学中,能显著提高课堂教学质量和学生解决问题的能力,因此教师应从整体上把握高数的教学体系,让学生逐步建立建模思维,不断深化和巩固用建模思想解决问题的能力。只有这样,融入数学建模思想的高等数学的教学效果才会起到应有的作用。
数学建模论文 第4篇
承诺书
我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名):1.指导教师或指导教师组负责人(打印并签名):
日期:年月日
赛区评阅编号(由赛区组委会评阅前进行编号):
编号专用页
赛区评阅编号(由赛区组委会评阅前进行编号):
全国统一编号(由赛区组委会送交全国前编号):
全国评阅编号(由全国组委会评阅前进行编号):
题目(黑体不加粗三号居中)
摘要(黑体不加粗四号居中)
(摘要正文小4号,写法如下)
(第1段)首先简要叙述所给问题的意义和要求,并分别分析每个小问题的特点(以下以三个问题为例)。根据这些特点对问题1用······的方法解决;对问题2用······的方法解决;对问题3用······的方法解决。
(第2段)对于问题1,用······数学中的······首先建立了······
模型I。在对······模型改进的基础上建立了······模型II。对模型进行了合理的理论证明和推导,所给出的理论证明结果大约为······,然后借助于······数学算法和······软件,对附件中所提供的数据进行了筛选,去除异常数据,对残缺数据进行适当补充,并从中随机抽取了3组数据(每组8个采样)对理论结果进行了数据模拟,结果显示,理论结果与数据模拟结果吻合。(方法、软件、结果都必须清晰描述,可以独立成段,不建议使用表格)
(第3段)对于问题2用······
(第4段)对于问题3用······
如果题目单问题,则至少要给出2种模型,分别给出模型的名称、思想、软
件、结果、亮点详细说明。并且一定要在摘要对两个或两个以上模型进行比较,优势较大的放后面,这两个(模型)一定要有具体结果。
(第5段)如果在??条件下,模型可以进行适当修改,这种条件的改变可能来自你的一种猜想或建议。要注意合理性。此推广模型可以不深入研究,也可以没有具体结果。
关键词:本文使用到的模型名称、方法名称、特别是亮点一定要在关键字里出现,
5~7个较合适。
注:字数700~1000之间;摘要中必须将具体方法、结果写出来;摘要写满几乎一页,不要超过一页。摘要是重中之重,必须严格执行!。
页码:1(底居中)
一、问题重述(第二页起黑四号)
在保持原题主体思想不变下,可以自己组织词句对问题进行描述,主要数据可以直接复制,对所提出的问题部分基本原样复制。篇幅建议不要超过一页。大部分文字提炼自原题。
二、问题分析
主要是表达对题目的理解,特别是对附件的数据进行必要分析、描述(一般都有数据附件),这是需要提到分析数据的方法、理由。如果有多个小问题,可以对每个小问题进行分别分析。
(假设有3个问题)
1.1问题1的分析
对问题1研究的意义的分析。
问题1属于。。。。。数学问题,对于解决此类问题一般数学方法的分析。
对附件中所给数据特点的分析。
对问题1所要求的结果进行分析。
由于以上原因,首先建立一个。。。。。。的数学模型I,然后将其改进建
立一个。。。。。。。的模型II,。。。。。。。。。。对结果分别进行预测,并将结果进行比较.
1.2问题2的分析
对问题2研究的意义的分析。
问题2属于。。。。。数学问题,对于解决此类问题一般数学方法的分析。
对附件中所给数据特点的分析。
对问题2所要求的结果进行分析。
由于以上原因,首先建立一个。。。。。。的数学模型I,然后将其改进建
立一个。。。。。。。的模型II,。。。。。。。。。。对结果分别进行预测,并将结果进行比较.
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
三、模型假设(4号黑体)
(以下小4号)
1.假设题目所给的数据真实可靠;
2.
3.
4.
5.
6.
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
注意:假设对整篇文章具有指导性,有时决定问题的难易。一定要注意假设的某种角度上的合理性,不能乱编,完全偏离事实或与题目要求相抵触。注意罗列要工整。
四、定义与符号说明(4号黑体)
(对文章中所用到的主要数学符号进行解释小4号)
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
尽可能借鉴参考书上通常采用的符号,不宜自己乱定义符号,对于改进的一
些模型,符号可以适当自己修正(下标、上标、参数等可以变,主符号最好与经典模型符号靠近)。对文章自己创新的名词需要特别解释。其他符号要进行说明,注意罗列要工整。如“ijx~第i种疗法的第j项指标值”等,注意格式统一,不要出现零乱或前后不一致现象,关键是容易看懂。
五、模型的建立与求解(4号黑体)
5.1准备工作(4号宋体)
5.1.1数据的处理
1.······数据全部缺失,不予考虑。
2.对数据测试的特点,如,周期等进行分析。
3.·····数据残缺,根据数据挖掘等理论根据。。。。。变化趋势进行补充。
4.对数据特点(后面将会用到的特征)进行提取。
5.1.2聚类分析(进行采样)
用······软件聚类分析和各个不同问题的需要,采得。。。组采样,每组5-8个采样值。将采样所对应的特征值进行列表或图示。
5.1.3预测的准备工作
根据数据特点,对总体和个体的特点进行比较,以表格或图示方式显示。
5.2问题1的。。。模型(4号宋体)
5.2.1模型I(······的模型)
1.该种模型的一般数学表达式,意义,和式中各种参数的意义。注明参
考文献。
2.······模型I的建立和求解
(1)说明问题1适用用此模型来解决,并将模型进行改进以适应问
题1。
(2)借助准备工作中的采样,(用拟合等方法)确定出模型中的参
数。
(3)给出问题1的数学模型I表达式和图形表示式。
(4)给出误差分析的理论估计。
3.模型I的数值模拟
将模型I进行数值计算,并与附件中的真实采样值(进行列表或图
示)比较。对误差进行数据分析。
5.2.2模型II(······的模型)
1.该种模型的一般数学表达式,意义,和式中各种参数的意义。注明参
考文献。
2.······模型II的建立和求解
(1)说明问题1适用用此模型来解决,并将模型进行改进以适应问
题1。
(2)借助准备工作中的采样,(用拟合等方法)确定出模型中的参
数。
(3)给出问题1的数学模型I表达式和图形表示式。
(4)给出误差分析的理论估计。
数学建模论文 第5篇
优秀高教社杯全国大学生数学建模竞赛题目
(请先阅读“全国大学生数学建模竞赛论文格式规范”)
A题 城市表层土壤重金属污染分析
随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、??、5类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查。为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。
现要求你们通过数学建模来完成以下任务:
(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。
(2) 通过数据分析,说明重金属污染的主要原因。
(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?
数学建模论文 第6篇
1数学建模竞赛培训过程中存在的问题
1.1学生数学、计算机基础薄弱,参赛学生人数少
以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;
大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;
大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;
还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;
剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.
1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后
数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;
备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.
1.3学校重视程度不够,相关配套措施还有待完善
任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.
2针对存在问题所采取的相应措施
2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班
最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;
学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.
2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法
近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.
2.3学校逐渐重视,加大了相关投入,完善了激励措施
最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.
3结束语
对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.
数学建模论文 第7篇
一、高数教学里的量化指标与线性关系
要将数学建模应用于高等数学教学中,首先,要取得建模所需的一些参数;
其次,要分析出各个参数之间的线性关系;
然后,才能建立模型的计算公式,并进行测算、校验及修正。
在选取参数之前,我们先要明确我们建立模型的目的。在这里,我们建立数学模型的目的是:建立课堂上的教学质量,与期中期末考试之间的某种联系,从而达到提升考试成绩的目的。
经验表明,教学质量好,学生的整体成绩也会好。如果学生的整体成绩都不尽如人意,那么在教学的过程中就可能出现了问题。如何从细节上及早分析出教学的过程是否出现了问题,将对考试的成绩造成怎样的影响,正是我们建立这一数学模型的目的所在。
二、分析数学建模中的相关参数
我们分析一下在数学模型中将用到的一些量化指标,也就是模型的参数:
(1)学生的上课签到情况;
(2)课堂问答的情况;
(3)作业的情况;
(4)测验的成绩。
这四项参数,与考试的成绩之间,有着某些必然的联系。下面我们对这些参数进行逐项分析:
1.学生上课签到情况。如果签到率达到100%,那么授课是有保障的。反之,如果降为0(当然这是一种极端的情况),那么除非学生自学成才了,否则教学质量将是没有保障的。所以,课堂上的签到情况,与成绩之间,有一个乘数关系。
2.课堂问答。课堂问答,包括学生的主动提问,教师的例行提问以及下课后的一些补充问答。课堂问答的多少,与两方面有关系。第一,是学生的学习积极性。如果学生对学习没有积极性,那么,主动提问的情况就不多。第二,是教学内容的难易度。如果教学的内容很简单,一般学生的提问也相对会减少。所以,对于课堂提问的情况,要一分为二地分析。当课堂提问的数量上升时,既有可能是学生的学习积极性上升,也可能是教学内容相对有难度。学习积极性上升,则成绩有可能提高。但如果是教学内容有难度,则成绩反而有可能下降。因此,对于课堂问答的情况,除了进行纵向对比外,还需进行历史同期数据的横向对比。
所谓纵向对比,就是这一期学生,在学习高数的过程中,各阶段的课堂提问情况。横向对比,则是与前几期学生,以及同期别的班的学生相比,这一班学生的课堂问答情况。当然,也有可能出现学生不积极提问,同时教学难度也不大的情况。这时候就要用到下一个关键参数——测验。
3.测验的成绩。课堂问答相当于抽检,而测验则是一次小规模的普查。测验的结果可以较为真实的反映出学生的学习成果。不过,测验不可能频繁的进行。因为课时安排主要还是以授课为主。过多的测试,有可能导致本末倒置。
4.作业的情况。除了测试之外,一个比较好的检测学生学习状况的方法,就是作业。大学的作业,由于教学安排的原因,不像中小学作业那样密集。同时,教授的主要工作也不是批改作业。但抽查作业的完成情况,仍然可以对了解学生的学习情况起到一些辅助作用。
三、建立数学模型
分析了数学建模的相关参数,我们就要着手进行数学建模。尽管模型中的几项参数,与考试成绩之间都是乘数关系,但是各项参数之间并不是简单的乘数关系,而是相互有一个比例。所以,在建立模型时,我们采用将参数域对象相乘,然后相加,取和,然后在分析与考试成绩之间的线性关系。
我们设立这样一个方程式:
上课签到情况×参数值A×权重值1+课堂问答情况×参数值B×权重值2+作业情况×参数值C×权重值3+测验情况×参数值D×权重值4=考试成绩。
然后,实际成绩进行比对。
在这个过程中,调整参数对象的值,以及四个权重值,推算出接近于考试成绩的公式,这样就可以建立起一个初步的数学模型。
四、对数学模型进行应用和修正
建立了数学模型后,还需要根据实际的教学情况,进行修正,是数学模型与真实情况相接近,从而对教学工作有真正的应用价值。
当数学模型经过修正逐渐完善后,根据各项教学指标,就可以有预见性地调整教学工作。比如,课堂提问数量的上升,作业的情况良好,则教学情况有可能是在向好的方向发展。反之,就可及时进行调整。比如,增加与学生的交流,看是哪些地方还不尽理解,或者有些什么别的因素在影响,及早排查,从而确保期末考试成绩不出现大的波动,影响教学质量。
通过在高等数学教学中,融入数学建模的思想,我们可以发现,以往那些不太理解的量化指标,确实是与教学质量之间有着必然联系的。通过数学建模,我们不仅促进了对科学化的教学方式的理解,也对数学建模这一工具方法本身,有了更多更深刻的了解。
数学建模论文 第8篇
一、高职数学教学现状
最近几年,以“工学结合”为行动指导的教学思想应用在高职领域,这个高职教育带来了福音,并且在不同的专业上都获得了不错的成功。但是高职数学作为专业基础的科目的发展却是不尽人意,虽然也有改革,但是都没达到理想的效果。本文就此从以下三方面分析了高职数学教学的现状:
1学生成绩参差不齐
高职各专业学生的来源大致有以下几种:普通高中学生,职业高中学生,中专学生。他们的数学基础普遍较差,学习积极性普遍不高,学生来源的多元化导致高职学生的入学成绩总体水平都不高亦或出现层次不齐的现象,这在数学学科上表现的更加突出。现如今,从整个教育背景来看,应试教育仍占主角,这就使得学生缺乏对数学学习的动力及兴趣。曾有人就学生的学习兴趣、态度及看法做了一次问卷调查,从调查结果显示:认为高职数学不重要占38.3%;
“不喜欢”、“讨厌”占47.5%;
“难听懂”占31.7%;
“不必看书”占25.2%;
“用数学软件计算数学有兴趣”占49.7%从这个调查中可以看出,学生对于应试教育的数学存在反感,而将计算机应用到数学教学中很感兴趣,另外在调查中学生出现的这些态度及想法是进行高职数学教学改革所必须面对和改革的。
2教学内容枯燥乏味
长期期以来,高职高等数学教程就是本科教材的袖珍版,教材过分注重知识的系统性,完整性,内容显得抽象,深奥和学生所学专业脱节,教材中大部分内容是本科版的压缩,算数学的多,用数学的少,而且老师的讲解也是枯燥乏味的,这就使得学生对于学习数学失去了原本的兴趣,以微积分为例:老师一般按照函数、极限、连续、导数、微分、、微分方程、定积分、定积分的应用、不定积分这一教学顺序来完成教学目标,通过这样的讲学,不仅节约了时间,还使得教学的过程易于控制,但是由于其全部都是理论知识使得高职学生对数学的学习失去了兴趣,缺乏学习数学的动力,使得学生的主观能动性都被禁锢了,这对提高学生的创新能力创新精神很不利。
3教学方法单一、无新意
由于数学基础及能力相对较差,他们无论在学习能力、学习方法还是学习习惯方面都或多或少存在着问题。接受知识慢,对数学的学习兴趣不高,学生不会学习,被动学习占多数。
而在高职教学中仍然践行“教师讲,学生学”的教学方法,主要以传授知识为主,并不重视知识的应用和学生学习能力的培养,使得师生之间互动较少,出现一种被动学习的现象,在高职教学中,数学教学所扮演的是在完成一个“教学任务”,并将“学数学”和“用数学”分开来,使得学生对于数学就只停留在无意义的做题和考试中。
二、数学建模融入高职数学教学的探究
高等数学是高职院校各专业开设的一门基础课程,同时也是对学生的数学思想、数学素质进行综合培养的重要课程。它不仅为学生后续课程的学习和解决实际问题提供数学知识和数学方法,而且也为培养学生的思维能力、分析和解决问题的能力提供了必要的条件;
将数学建模融入到高职数学教学中是高职教学改革的必然选择,也是提高高职教学质量的重要方法,本文从以下三个方面主要论述将数学建模融入到高职数学教学方法中:
1融入到数学原理的学习内容中
数学的教学中,学生学习了无数的定义、定理及公示,可是却不清楚为什么要学,学习它有何意义,有什么用。因此在讲述新的数学知识时先讲述所学知识的历史渊源还是很有必要的,例如在讲述微积分时,可先讲述微积分的发展史,讲述当时科学家所面临的什么样的问题——精密科学需要研究变量的数学,在这之前的数学研究的领域都是固定的有限的,而在这之后数学包含了变化,运动等等,所以微积分可以说是数学史上的分水岭。
在数学教学中,老师应尽可能地了解数学原理产生的背景,与学生一起探讨新的数学思想萌芽的过程,在这过程中,使学生认识到数学原理的发展过程是经过曲折而又漫长的过程,这对学生的数学学习有很大的作用。
2融入到数学习题的中
在高职数学的教学过程中,应该注意习题课作用的发挥,高职数学习题课是高职数学教学的一个重要组成部分,也是课堂教学的进一步深化,它不仅有助于学生理解和消化课堂所学的知识而且对于发展数学思维的训练也起到不可或缺的作用。从学生接触数学这门课程开始,做习题一直是学习数学、提高数学成绩的有效手段,甚至在数学中还存在“学数学的最好方式是做数学。”然而目前在高职数学教材的习题中涉及数学应用的问题较少,即使存在,也是一些拥有具体答案的问题,这对提高学生的创新能力很不利。所以为了为了弥补这一缺陷,老师在设置数学问题是尽量选些实际应用的题目,来做建模示例。另外,根据学生的自身情况,可以设置一些具有实际性、趣味性及开放性的习题,这样可以拓展学生的思维空间。
对于传统的“老师教,学生学”,在这里可以采用“学生教,老师和学生一起学”,通过让学生当“老师”,这样可以充分发挥学生的积极性,此外让学生感觉上数学课是一种享受的过程
3融入到数学考核中
传统的考试形式单一,学生和老师准备的单一枯燥,而且内容具有片面性,不能将学生和老师的积极性和创造性体现出来,尤其是学生。现如今更多地提倡“创新教学”,因此,闭卷考试再也不作为评定成绩的唯一方法,对于考试的评定应能充分体现学生多方面的能力。例如可将试题可以分成两个部分:一部分是基础知识,应在规定时间内完成;
而另一部分则是一些较为实用性的开放性试题。通过这两部分的试题不仅能考查学生理论的综合知识能力,还能在开放性试题中挖掘学生的潜力。
三、结束语
总而言之,把数学建模的思想方法融入到高职数学教学中是创新时代对人才培养的要求,是社会发展的必然结果,这是必要的,也是可行的。通过实践,数学建模思想的应用更有利于学生学习和掌握高职数学的基本知识,激发学生对数学的学习兴趣,而且进一步培养了学生的创新意识和创新能力。另外在当今的理工大学中数学的应用意识和数学建模能力已成为其大学生的基本素质,随着数学建模对高职数学教学的意义逐渐深入研究,可以看出数学建模思想在提高职高的学生数学素质起到了一定的推动作用。
数学建模论文 第9篇
摘要:本文以实际教学案例,具体的分析了数学建模思想在运筹学教学中的应用及所产生的应用价值,期望能够为数学教学改革工作提供一定的帮助。
关键词:数学建模思想;
运筹学;
应用;
应用价值
运筹学是结合各种科学技术知识有系统性的教学方法,有效的解决实际问题,并且注重人力、物力、财力等有限资源的合理统筹安排,实现最有决策。近年来运筹学广泛的应用于教学工作中,但是,在数学教学中,针对具体问题,构建数学模型仍是教学难点和重点。基于此,本文对数学建模在运筹中的运用展开具体的分析,期望能够产生一定的积极效用。
一、数学建模在运筹中的运用——教学内容
传统的数学教学偏重理论知识的灌输,且数学公式庞大、理论繁琐、计算复杂,容易挫伤学生的学习兴趣和积极性,因此,利用数学建模思想、运筹学,在教学内容上穿插一些能够比较客观的反映学生日常生活所关心的实际问题,如:企业产品加工问题、购买汽车问题、运输问题、选课策略问题等,调动学生的学习兴趣,使得学生从解决问题的角度出发,认真的思考如何构建数学模型,找出相应的解决办法。我们举个例子:例1:针对选课策略问题,某所学校规定,该校运筹学专业的学生在毕业之前必须学习和掌握3门运筹学课程、2门数学课程以及2门计算机课程,该校关于这方面的课程编号、学分、选修课要求以及所属类别进行了规定,如表1。根据表1,请同学思考,运筹学专业的学生毕业前最少可以学习哪些课程,而且如果希望课程少却获得的学分多,该如何选课。这是一个比较贴近学生生活,与学生密切相关的分配问题,我们可以建立0—1规划的数学模型,解决上述的问题,而且考虑到学生希望课程少,却获得的学分高,我们可以引出目标规划问题。另外,教师在讲解多阶段决策锅中最优化问题时,我们可以有效的引入与其相关(或者相类似)的“商人安全渡河问题”,如:3名商人各自附带一个随从,并且每一只小船职能容纳2人,一旦随从人数多余商人,便采取杀人取货这样的数学游戏,调动学生的学习兴趣,让学生体验到利用数学建模思想、运筹学解决实际问题的乐趣,促进学生更加高效的学习运筹学知识和技能。
二、数学建模在运筹中的运用——教学方法
为了全面的提高教学水平,需要改变传统影视交易理念下的灌输教学方法,可以采取探究式教学,即:利用数学建模思想、运筹学技能,由浅入深、由直观到抽象的传授知识,促使学生真正意义上掌握数学知识和问题解决技能。我们举个例子:例2:运筹学课程绪论的引用,在教学中可以引入一个生动形象的故事情节,如:齐王和田忌赛马,按同等次,两人各种上、中、下三个等次的3匹马,在比赛中,齐王的马比田忌的马胜一筹(三局两胜),为了胜利,田忌采用了以下策略,田忌的上等马与齐王的中等马比赛、中等马与齐王的下等马比赛,下等马与齐王的上等马比赛,最终田忌以两局胜利战败齐王,这充分的体现了田忌对运筹学的运用。齐王和田忌赛马的故事,彰显了数学建模思想、运筹学中的优化思想,并且避免了直接灌输运筹学知识给学生所带来的困惑,能够有效的激发学生的学习兴趣,有利于全面的提升教学水平。另外,对运筹学的传授,不应该局限于知识的传播,更加需要注重知识的拓展与延伸,全面的培养学生的发散性思维,提高学生的创新意识和创新能力。如在运输问题的运筹学讲解中,教师可以现提出问题,让学生根据已经学习和掌握的知识,自主的解决问题,与此同时,教师需要指导学生建立线性规划模型,且采用单纯形法进行求解,在此基础上,鼓励支持学生分析运输问题存在的线性规划特点,促使学生简化计算过程,提高求解效率。总的来说,在实际教学中,教师应该以数学建模思想为指导,遵循启发式原则,调动学生的学习兴趣、拓展学生的学习思维,帮助学生融会贯通的掌握知识和技能,提高学生问题解决能力,从而提高教学质量。
三、结语
数学建模在运筹中的运用注重实践性,在实际教学中,应当注重理论知识与实际问题的联系,并且需要加强运筹学中的数学建模教学案例的引用,优化教学内容和教学方法,进行深入的运筹学课程教学改革,锻炼培养学生的运筹学思维能力以及实际问题的解决能力,从而推动教学水平的提升,促进学生身心健康发展。
推荐访问:建模 数学 论文 数学建模论文9篇 数学建模论文(推荐9篇) 数学建模论文范文100篇