五年级小学数学教案22篇(完整)

时间:2023-07-08 14:35:05 浏览量:

五年级小学数学教案第1篇一、学情分析:五(2)班共有学生38人,从整体上来看,本班学生的学习习惯良好,大多数学生能按时完成作业,上课能积极回答问题,敢于充分发表自己的不同见解。对数学学科有较浓厚的学习下面是小编为大家整理的五年级小学数学教案22篇,供大家参考。

五年级小学数学教案22篇

五年级小学数学教案 第1篇

一、学情分析:

五(2)班共有学生38人,从整体上来看,本班学生的学习习惯良好,大多数学生能按时完成作业,上课能积极回答问题,敢于充分发表自己的不同见解。对数学学科有较浓厚的学习兴趣;
有一定的分析问题,解决问题的能力,爱钻研,敢于探索,爱提问和质疑。五(1)班共有学生38人,相比之下,学习习惯不是很好,成绩也不好;
近10名成绩过差,勉强达到四年级水平,主要表现在知识欠账过大,接受能力差,学习不够积极主动,有时有照抄作业现象。

二、教材分析:

本册教材包括下面这些内容:分数乘法、长方体(一)、分数除法、长方体

(二)、分数混合运算、百分数、统计和总复习,共计7个单元。另外还安排了“数学与生活”、

本册教材中的教学重点有:理解分数乘除法的意义及其计算方法;
重点培养分析问题、解决问题的能力(主要针对分数应用题);
了解长方体的几何结构,掌握其表面积和体积的计算方法;
认识百分数的意义,探索并掌握百分数与分数、小数互化的方法;
认识扇形统计图、条形统计图以及折线统计图的特点。

本册教材中的教学难点有:整数乘法的意义与分数乘法的意义之间的联系;
分数除以整数的意义要结合具体情境与操作来理解;
除数是分数的除法的意义(是从被除数中能够分出多少个除数的角度来理解的);
感受1立方米(m3)、1立方分米(dm3)、1立方厘米(cm3)以及1升(L)、1毫升(mL)的实际意义,能形象地描述这些体积单位实际有多大。

三、本学期主要教学任务

理解分数乘除法的意义,掌握其计算法则,能够正确、熟练地进行计算。能根据分数乘除法的意义,解决一些简单的数学问题。

了解长方体和正方体的几何结构,理解表面积和体积的含义,掌握其表面积和体积的计算方法,能正确计算其表面积和体积,并运用所学解决日常生活中有关的一些基本问题。

掌握分数混合运算的计算方法,并正确进行计算,掌握分数乘、除法的数量关系并能运用这些知识和技能解决较复杂的分数乘、除法应用题。

认识百分数的意义,会正确的读、写百分数,探索并掌握百分数与分数、

小数互化的方法,能在理解百分数的含义和题目数量关系的基础上,正确的解答百分数应用题。

认识扇形统计图、条形统计图以及折线统计图的特点,并学会选择使用;
懂得中位数、众数的意义,会从一组数据中找出中位数和众数,并能针对具体问题选择使用。

四、主要教学措施:

1、教师要从自身做起,严格要求自己,认真备好课、上好课,批改好作业,以积极认真的态度来影响学生,提高学生对数学这门学科的兴趣,使学生愿学、乐学。

2、积极学习新课程改革的理论和经验,进一步培养学生自主、合作、探究的学习能力,使他们学的轻松快乐,使学生有学会向会学转变,有要我学向我要学的转变,提高学生学习自主性和学习的效率。

3、充分把远程教育和网络教育等现代化教育资源引进课堂为教学服务,提高课堂教学的直观性、形象性,为提高教学质量打下基础。

4、抓好每月一次的单元测试,以激励表扬的方法让学生在学习中展开竞争,使不同的学生得到不同的发展;
对后进生给予更多的关心,做到课堂上多提问,课下多关心,对他们的作业争取做到面批面改。使他们进一步树立起学习的信心,从而促进全班教学质量的提高。

北师大版五年级下册数学教案

第一单元分数乘法

单元要点分析:

一、单元教学内容

分数乘法(一)(分数乘整数)、分数乘法(二)(整数乘分数)、分数乘法(三)(分数乘分数)、练习一。

二、单元教学目标:

1.理解分数乘法的意义,掌握其计算法则,能够正确、熟练地进行计算。能根据分数乘除法的意义,解决一些简单的数学问题。

2.经历观察、猜想和证明等数学活动,从数学的角度提出问题,理解问题,并运用分数乘分解决问题的过程,能有条理、清晰的阐述自己的观点。

3.通过观察、猜想、实验等数学活动,体验数学问题的探索性和挑战性,感受数学思考过程的条理性。认识到生活中有许多问题可以借助分数乘法来解决,并可以借助数学语言来表达和交流,从而进一步体验数学与日常生活的密切关系。

三、单元教学重点

分数乘法的意义与计算法则。

四、单元教学难点

一个数乘分数的意义。

五、单元课时划分

共7课时

第1课时分数乘法(一)

教学目标:

知识目标:

学习分数乘以整数的计算方法,让学生亲自经历探究分数乘以整数的计算原理,学生能够熟练准确的计算分数乘以整数。

能力目标:

能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。情感目标:

使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。教学重点:

学生能够熟练的计算分数乘以整数

教学难点:

培养学习数学的良好兴趣。

教学方法:

合作探究、启发引导、讲练结合

教学过程:

一、复习导入:

教师出示教学板书,请学生计算分数加减运算题。(临时定题)

教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?学生寻找完毕,纷纷举手准备回答问题。

教师提问学生回答问题(先通分,再进行分子与分子相加减;
分母不变?)。注意更正学生的错误和表扬回答问题的同学。

二、讲授新课

同学们我们学习一种新的运算:分数乘法。

让学生想一想什么是分数乘法?

学生同桌之间讨论,教师提问学生回答问题。

教师板书例题,让学生想一想如何计算?

学生列出算式:1/5×3=

学生同桌之间相互讨论:1/5×3表示什么(表示求3个1/5的和是多少)?该如何计算?

教师提问学生说一说自己是怎样计算的?

学生1:1/5×3=1/5+1/5+1/5=3/5;

学生2:1/5×3=??

教师和学生总结分数乘以整数的计算方法:

分数乘以整数,整数乘以分子作为分子,分母不变。

三、巩固练习:

1、做课本2页涂一涂,算一算。

让学生熟练计算,教师及时纠正学生错误的`计算方法。

2、做课本试一试1、2题。

四、课堂小结:

同学们,这一节课你学到了哪些知识?(提问学生回答)

五、布置作业:

课本2页3题;

选用课时作业设计。

板书设计:

分数乘法

1/5×3=1/5+1/5+1/5=3/51/5×3=??分数乘以整数的计算法则:

整数乘以分子作为分子,分母不变。

分数乘以整数的意义:

求几个相同加数的和是多少。

教学反思:

五年级小学数学教案 第2篇

教学目标

1.理解同分母分数的加、减法的意义。

2.理解和掌握同分母分数加、减法的计算方法,能正确解决同分母分数加、减法的简单应用题。

3.通过合作交流,培养学生的分析、比较和概括能力。

教学重难点

重点:同分母分数加、减法的计算方法。

难点:掌握同分母分数加、减法的算理和计算法则。

教学工具

多媒体课件

教学过程

【谈话引入】

师:我们在三年级的时候已经学过简单的同分母分数加、减法,今天这节课我们一起学习同分母分数加、减法的一般计算方法。(板书课题)

【新知探究】

1.教学例1的第(1)题

(1)课件出示例1情境图,引导学生看图,提出问题:爸爸和妈妈共吃了多少张饼?

(2)学生思考该怎样列式?为什么?(+,表示把两个分数合并起来,所以用加法计算)

(3)师:你能算出结果吗?是怎样想的?

学生讨论后回答,教师归纳:是1个,是3个,合起来是4个,即。

(4)师:+的和是,为什么分母没变?分子是怎样得到的?你会写出计算过程吗?

同桌商量后举手发言,教师归纳:因为和的分母相同,也就是它们的分数单位相同,所以可以直接用两个分子相加,分母不变。

(5)课件动画演示上面的计算过程。

教师引导学生观察图示,可以看出结果是,也就是。强调:计算的结果,能约分的要约成最简分数。

2.教学例1的第(2)题

(1)组织学生观察情境图,指名学生说一说求“爸爸比妈妈多吃了多少张饼”应怎样列式。

根据学生的回答,教师板书:

(2)师:为什么-的分子可以直接相减?

因为它们的分母相同,也就是它们的分数单位相同,3个减去1个,得到2个,即,也就是。

3.分数加、减法的含义

学生小组交流讨论,师生共同小结出分数加、减法的含义与整数加、减法的含义相同,加法表示把两个数合并成一个数的运算,减法是已知两个数的和与其中一个数,求另一个数的运算。

4.同分母分数加、减法的计算法则:同分母分数相加、减,分母不变,只把分子相加减。

【巩固训练】

1.完成教材第90页“做一做”。

2.完成教材第91页第1~5题。

3.完成教材第92页第6题。(提示:同分母分数连加、连减,分母不变,只把分子连加或连减)

课后小结

你学会计算同分母分数的加、减法了吗?

课后习题

工程队铺一条公路。六月份上半月铺了全长的十五分之四,下半月铺了全长的十五分之八,还剩这段路的几分之几没有铺?

板书

同分母分数加、减法

同分母分数加减法的计算法则:同分母分数相加、减,分母不变,只把分子相加减。

五年级小学数学教案 第3篇

教学目标:

知识与技能:会解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。

过程与方法:引导学生用时间线段图和竖式解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。

情感与态度:在学习中使学生明白时间的宝贵,养成珍惜时间的好品质。

教学重点:

用时间线段图和竖式解决同一天中,时和分、分和秒形式的两个时刻与时间(段)的计算问题。(加法计算)

教学难点:

学生对于题意的理解。

教学过程:

一、导入阶段

出示

小丁丁和同学约好上午9时15分在动物园门口**,小丁丁早晨7时48分出门,路上用了1小时23分。

(1)在这段文字叙述中你获得了哪些信息

上午9时15分在动物园门口**;

早晨7时48分出门;

路上用了1小时23分。

(2)9时15分、7时48分、1小时23分各表示什么,有什么不同?

9时15分、7时48分表示时刻,是指某一事件发生的时候。

1小时23分表示时间,是指某一事件经过了多久。

(3)出示问题“小丁丁几时几分到达动物园门口”这是求时间还是求时刻?

是求时刻

(4)今天我们就要来讨论关于时间的计算的问题。(出示课题)

[对于学生经常会混淆的“时间”“时刻”这2个数学用语进行简单的辨析。使学生在解决问题时能明确地知道是要求什么?]

二、中心阶段

1、请学生试着计算。

2、汇报

(1)画图

(2)竖式算

注意:这步计算,“分”的计算满60要向“时”进1,因为分与时之间的进率是60。

答:小丁丁9时11分到达动物园门口。

3、比较2种方法得出2种方法都很好,都很直观、很简洁。

4、小结

我们可以利用时间线段图和竖式来解决某一时刻经过多少时间会到哪一个时刻的计算问题。

三、练习阶段

7时50分+45分=()时()分

8时26分+2小时37分=()时()分

15分18秒+3分52秒=()分()秒

五年级小学数学教案 第4篇

【教学目标】

1、使学生在具体的操作活动中,认识公因数和最大公因数,会在集合图中分别表示两个数的因数和它们的公因数。

2、 使学生会用列举的方法找到100以内两个数的公因数和最大公因数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。

3、使学生在自主探索与合作交流的过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。

【教学重、难点】

理解两个数的公因数和最大公因数的含义。

【教学准备】

学生准备12cm、宽8cm的长方形纸片,6张边长6cm的正方形纸片,8张边长4cm的正方形纸片。

【教学过程】

一、创设情境,激趣导课

1、这节课老师先请大家帮我解决一个问题:我们家有一个长18分米、宽12分米的贮藏室。现在老师想给贮藏室里铺上地砖。我在瓷砖市场看到两种砖,一种是边长为4分米的正方形瓷砖,一种是边长6分米的正方形瓷砖,你们帮我选一选,哪一种瓷砖能正好用整块铺满?

二、动手操作,探求新知

1、请同学们拿出准备好的长方形、正方形纸片,自己试着摆一摆。

2、生操作,师检查。

3、通过摆小正方形,我们发现了什么?老师应该选哪一种地砖?

(边长6分米的正好整块铺满,边长4分米的不能正好铺满 ,应该选边长6分米的地砖。

4、边长6分米的地砖长边和宽边各铺了几块?用算式怎样表示?地砖的边长6分米和贮藏室的长18分米,宽12分米有什么关系?

(长铺3块 18÷6=3

宽铺2块 12÷6=2 6即能被18整除,也能被12整除)

5、边长4分米的地砖不能正好铺满?长、宽边各铺了几次?用算式怎样表示?

(长铺了4次 18÷4=4…2

宽铺了3次 12÷4=3 4不能被长18整除,所以铺不满,能被12整除,所以宽能铺满)

6、比较两组算式,说说地砖的边长符合什么条件能用整块正好铺满?

边长既能被12整除,也能被18整除。

7、想象延伸

根据我们得出的结论,你在头脑里想一想,贮藏室还可以选择边长几分米的地砖?小组互相交流,并说说你是怎么想的?

(边长 1分米,2分米,3分米的正方形地砖都能正好整筷铺满,因为这3个数既能被12整除,也能被18整除。)

1、2、3、6这4个数与18有什么关系?与12呢?

8、揭示概念

讲述:1、2、3和6既是18的因数,又是12的因数,它们就是12和18的公因数。其中最大的公因数是6,6就是12和18的最大公因数。

9、4是18和12的公因数吗?为什么?

三、自主探索,用列举的方法求公因数和最大公因数。

1、刚才我们认识了公因数和最大公因数,那么怎样求两个数的公因数和最大公因数呢?接下来我们一起探究这个问题。

(自主探索)提问:12和8的公因数有哪些?最大公因数是几?

你能试着用列举的方法找一找吗?

2、交流可能想到的方法有:

①依次分别写出8和12的所有因数,再找出公因数

②先找8的因数,再从8的因数里找出12的因数

③先找12的因数,再从12的因数里找出8的因数

比较②、③种方法,这两种方法有什么相同之处?哪一种简单,为什么?(8的因数个数少。)

3、明确:8和12的公因数有1、2、4.4就是8 和12的最大公因数。

4、用集合图表示

8 和12的公因数也可以用集合圈来表示,我们用左边的圈表示8的因数,用右边的圈表示12的因数,那么相交的部分表示什么?应该填什么数?

提示不要重复填写,提问:6是12和8的公因数吗?为什么?3呢?8呢?

四、巩固练习

我们学会了用两种不同的方法来求两个数的公因数和最大公因数,下面我们来做一组练习。

1、练一练

自己完成,注意找的时候一对一对找,不要遗漏。

2、练习五的第一题、第2题、第3题,自己完成。

五、总结

这节课我们主要认识了公因数和最大公因数,掌握了求两个数的公因数和最大公因数的方法。这一知识在实际生活中应用非常广泛,下节课我们主要应用这一知识来解决实际问题。

五年级小学数学教案 第5篇

教材分析

植树问题一共分三种情况,教材在编排时将它们分成三个例题进行教学,分别是两端都种、两端都不种、只栽一端。本节课我对教材进行了整合,在第一课时就将三种情况全部呈现,并且将重心放在探究只种一端时,棵树和间隔数之间的关系。其实只要是只种一端,不管路是几米,间隔数和棵数始终相等,因为树和间隔始终一一对应。处理好了这层关系,理解了一一对应,那么两端都种和两端都不种就可以根据对应思想,通过迁移发现间隔数和棵数之间的关系。

教学目标

1、通过探究,发现在一条线段上植树的问题的规律,理解并掌握不同种法中间隔数和棵数之间的关系。

2、经历探究规律的过程,培养学生观察、分析、合作等能力,初步渗透“一一对应”思想。

3、感受数学来源于生活更应用于生活,培养学生应用意识和解决问题能力。

教学重点:

理解间隔数和棵数之间的关系,建构数学模型。

教学难点:

建立模型及“一一对应思想”的应用。

教学过程

1、恰好3月份,植树节即将到来,因此在第一环节通过询问植树的好处,渗透环保意识,并让学生感受数学问题来源与生活。

2、第二环节我主要分三个层次进行教学,第一层通过小小设计师,将枯燥的解决问题转变成灵动的设计方案。先引导学生理解“每个5米种一棵”什么意思,有些学生可能认为只有两棵树之间的5米才是间隔,一边不种树的话那个5米就不是间隔,因此我将示意图这样设计,帮助学生更好地理解什么是间隔。再引导学生猜测并画图,让学生经历一个“猜想——验证”的过程。

第二层是本堂课最关键的部分,首先请学生展示作品,说说自己是怎么想的,

在说的过程中询问学生分了几个间隔,为什么分4个间隔,它是怎么来的。接着引导学生观察三种画法,它们有什么共同点和不同点,沟通三者之间的联系,并揭示每种种法的名称。然后将探究的重心放在只种一端的情况上,通过列算式,解释算式意义,并通过质疑,引导学生猜测棵数和间隔数之间有什么联系,为探究埋下伏笔。有些学生虽然对树和间隔的对应关系有点了解,但难以用语言概括,因此我在课件中用不同颜色描出树和它对应的间隔,闪烁树和间隔,并用圈一圈的方法,便于学生区分和发现,之后安排学生对照着左手,将自己的发现告诉同桌,深化对对应关系的理解。因为本节课的规律属于不完全归纳法,单靠一个例子是不科学,没有说服力的,所以我增加了300米的小路种树,想象着种树的过程,理解为什么只一端种时,棵数始终等于间隔数。最后运用迁移,理解为什么一个加1,一个减1。

第三层引导学生观察三个算式,有什么相同点,它们第一步都是先算什么?数学广角这类题目建模是关键,但没有解决问题的策略,就会使课显得空洞,这一层主要让学生形成一个策略:要知道一共有几棵树,必须先求出间隔数。接着通过例题,使知识得到一个巩固,最后展示生活中的植树问题,感受数学不仅来源于生活,更要运用于生活。

第三环节中设计了两道习题,第二题是生活中常见的例子,主要为了培养学生从字里行间寻找隐藏信息的能力,接着通过变式,隐去一座房子又会怎样种。其实在画图时会有这样一个疑惑,为什么那一端空在那不种树,而这道题目可以给出很好的说明,有时候在解决问题时还要注意联系生活实际。

教学反思:

作为新教师,对于这类课我是比较难把握,数学思维如此缜密,我在教学的过程中难免有所疏忽。

1、语言不够精炼,会不自觉地重复学生的话。在讲解只种一端的时候,学生对一一对应还是明了。

2、评价语有些生硬,对于学生的回答有时不能及时得做出点评。

3、探究得太少,自己说得太多。使课堂不够开放。

4、本节课虽然渗透了解决的方法,先求间隔数,但没有明确间隔数的求法。应该在板书上指明。

五年级小学数学教案 第6篇

教学目的

1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题.

2.培养学生观察、分析、思考和抽象、概括的能力.

3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育.

教学过程

一、谈话

我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、

整数的互化方法.今天我们继续学习分数的有关知识.

二、导入新课

(一)教学例1.

出示例1:用分数表示下面各图中的阴影部分,并比较它们的大小.

1.分别出示每一个圆,让学生说出表示阴影部分的分数.

(1)把这个圆看做单位1,阴影部分占圆的几分之几?

(2)同样大的圆,阴影部分占圆的几分之几?

(3)同样大的圆,阴影部分用分数表示是多少?

2.观察比较阴影部分的大小:

(1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等.)

(2)阴影部分的大小相等,可以用等号连接起来.(把图上阴影部分画上等号)

3.分析、推导出表示阴影部分的分数的大小也相等:

(1)4幅图中阴影部分的大小相等.那么,表示这4 幅图的4个分数的大小怎么样呢?

(这4个分数的大小也相等)

(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来).

4.观察、分析相等的分数之间有什么关系?

(1)观察 转化成 , 的分子、分母发生了什么变化?

( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍.)

(2)观察

(二)教学例2.

出示例2:比较 的大小.

1.出示图:我们在三条同样的数轴上分别表示这三个分数.

2.观察数轴上三个点的位置,比较三个分数的大小:

从数轴上可以看出:

3.观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律.

(1)这三个分数从形式上看不同,但是它们实质上又都相等.

(教师板书:

(2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?

三、抽象概括出分数的基本性质

1.观察前面两道例题,你们从中发现了什么变化规律?

“分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变.”(板书)

2.为什么要“零除外”?

3.教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”

(板书:“基本性质”)

4.谁再说一遍什么叫分数的基本性质?

教师板书字母公式:

四、应用分数基本性质解决实际问题

1.请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?

(和除法中商不变的性质相类似.)

(1)商不变的性质是什么?

(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变.)

(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算.

2.分数基本性质的应用:

我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解

决一些有关分数的问题.

3.教学例3.

例3 把 和 化成分母是12而大小不变的分数.

板书:

教师提问:

(1) ?为什么?依据什么道理?

( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )

(2)这个“6”是怎么想出来的?

(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)

(3) ?为什么?依据的什么道理?

( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )

(4)这个“2”是怎么想出来的?

(这样想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)

五、课堂练习

1.把下面各分数化成分母是60,而大小不变的分数.

2.把下面的分数化成分子是1,而大小不变的分数.

3.在( )里填上适当的数.

4. 的分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?

5.请同学们想出与 相等的分数.

规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、……分母是分子的4倍为:4、8、12、16……无数个.

六、课堂总结

今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好.

七、课后作业

1.指出下面每组中的两个分数是相等的还是不相等的.

2.在下面的括号里填上适当的数.

五年级小学数学教案 第7篇

教学目标:

1、了解相遇问题的特点,并学会解答求路程的相遇问题。

2、通过操作、观察、比较、分析,提高学生灵活解答的能力。

3、培养学生学习数学的兴及趣创新意识。

教学重点:

掌握求路程的相遇问题的解题方法。

教学难点:

理解相遇时,两人所走路程的和正好是两地的距离,相遇时间为两人共同所走的同一时间。

教学时间:

一课时

教具准备:

实物投影仪、多媒体CAI、小黑板

教学过程:

一、复习

1、列式计算

(1)李诚从家到学校,每分钟走70米,4分钟到达,他家离学校有多远?

(2)张华从家到学校,每分钟走60米,4分钟到达,他家离学校有多远?

2、板出关系式:
速度×时间=路程

二、引入

过去,我们研究的是一个物体运动时速度 、时间与路程之间的关系,今天我们就来研究两个物体运动时速度、时间与路程之间的关系。

三、新授

1、教学准备题

(1) 点击课件中准备题,出示题目。

(2) 学生理解题意。

(3) 找出出发时间、地点、运动方向。

相向而行

时间

(4)点击热键 和 强调出发时间和运动方向。

(5) 用课件演示两人同时从两地向对方走去,引导学生思考会出什么情况。利用课件继续演示会出现的三种情况(相距、相遇、交叉而过)。

(6) 利用课件出示准备题的表格,指导学生填表格的一、二行并课件演示填空内容。

(7) 请一学生上来利用交换性课间完成表格第三行的填写。

(8)引导学生讨论:出发三分钟后,两人之间的距离变成了多少?这时,张华走了几分钟?李诚呢?他们俩人共走了几分钟?两人所走路程的和与两家有什么关系?

(9)小结:出发一段时间后两人之间的距离变成了零,这时两人就相遇了,这就是我们这节课要研究的——相遇问题。(板书课题:相遇问题)

2、教学例5。

(1)点击新课出示例5。

(2)理解题意。

(3)四人小组讨论:

a、 两人是怎样走向学校的?

b、 4分钟后两人怎样?

c、 两人所行的路程与全路程有什么关系?

(4) 学生试做。

(5) 用电脑课件演示解题思路并讲评。

(6) 学生看书、质疑。

(7) 小结:我们解例5时用了哪两种方法?

三、巩固练习

1、学生做课本第59页的第1题和第2题。

2、利用课件出示选择题:

两人同时从两地走来,甲每分走52米,乙每分走48米,走了10分钟,两地相距多少米?

(1)2000米 (2)1000米 (3)无法确定。

四、全课总结

1、今天学了什么内容?

2、解决这样的问题,我们用了哪几种方法?

3、质疑。

五、聪明题

小华和小明相向而行,小华以每分钟20米的速度走了3分钟后,小明才开始出发,他每分钟走25米,5分钟后两人相遇,两地相距多少米?

五年级小学数学教案 第8篇

教学内容:

五年级上册P106例1及相关练习。

教学目标:

1、知识目标:让学生从熟悉的生活情境中发现并理解掌握间隔数与植树棵数的规律,会解决简单的植树问题。让学生经历将实际问题抽象出植树问题模型的过程,掌握种树棵数与间隔数之间的关系

2、过程目标:引导学生经历植树问题的探索过程,理解和掌握在直线上植树时棵数与间隔数之间的关系。

3、情感目标:通过实践活动激发学生热爱数学的情感,感受日常生活中处处有数学,体验学习成功的喜悦。培养学生的应用意识和解决实际问题的能力。

教学重点:

会应用植树问题的规律解决两端要栽的问题。

教学难点:

建构数模,探寻规律。

学具:

数字表格小棒

教学过程:

一、导入。

(一)、提出问题、引发思考、探究规律。

1、手引发的思考。

师:伸出你的左手,张开手指,用数学的眼光看一看,你发现了什么?

师:大家都有一双锐利的数学眼睛,发现手指与间隔之间也有数学。其实在生活中那些司空见惯的现象,只要用心观察、思考也能发现他们的数学奥秘。这节课,我们将深入研究类似手指与间隔这样的数学问题。

2、提问:每年的3月12日是什么日子?(点出植树的好处,进行思想教育。)揭题。(板书课题)

二、新课探究。

1、出示题目:同学们在校园小路一边植树,每隔5米栽一棵(两端要栽)。一共要栽多少棵树?【学生读题,分析题意。】

2、学生大胆猜测。让学生利用学具表格完成对因为长度不定的猜想,展示学生的猜想:(由于长度的不同,学生出现的情况不同,但总是会出现棵数比间隔数多一)

理解:“间隔”、“间隔数”、“棵数”。

3、验证,建立数模。(学生分小组亲自动手验证) ?

棵数和间隔数到底之间有什么关系呢?让学生大胆地猜想,并用图示的方法验证。

课件显示:隔5米种一棵,再隔5米种一棵……,一直画到100米!学生会感觉:这样一棵一间隔画下去,方法是可以的,但太麻烦了,又浪费时间。

引导学生:要研究棵数和间隔数之间有什么关系,有更简单的方法吗?

让学生思考、交流,尝试从简单入手,用“把大数变小数”的方法进行研究,渗透“化繁为简”的数学思想。

4、发现规律。

学生开始动手画图、填表、比较分析,然后展示他们的研究结果,发现在小数据中两端都种的情况下,都有“棵数比间隔数多1”的规律。

师:“棵数比间隔数多1”的规律是同学们用较小的数据研究出来的,如果数据增大,这个规律还成立吗?

课件动态演示:一个间隔对应一棵,这样一直对应下去,100个间隔就有100棵,种完了吗?

师:如果这条路变得很长很长、无限长,两端都种还有这样的规律吗?让学生从中体会到,不管数字多大,用“一一对应”的方法,最后还要补上一棵才能达到两端都种的结果。这个环节,潜移默化地渗透“极限”的思想。

5、总结归纳,应用规律,完成例1的学习。

归纳“化繁为简”的解题策略。让学生体会到研究问题可以从简单入手,将困难的变为容易的,将复杂的变为简单的,用这样的方法,可以有效的解决问题。把抽象的数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。

师:你们能用一个式子把规律表示出来吗?

【板书】间隔数+1=棵数?棵数-1=间隔数

学生完成课本例1的学习、解答。

6、联系生活

在我们生活中存在着很多类似植树问题的现象,你发现了吗?(让学生找出生活中的有关植树问题原理的实例)

让学生通过举例,体会到植树问题在生活中的广泛应用。同时让学生清楚地认识到路灯排列、排队等生活现象都与“植树问题”有着相同的数学结构,也给这种数学思想以充分的建模。

三、巩固练习。

1、点击生活。

(1)一排同学之间有7个间隔,这一排有()个同学。

(2)工人叔叔要在路的一边安装路灯,一共安装了6座。从第一座到最后一座一共有()个间隔。

2、解决问题。

(1)5路公共汽车行驶路线全长12km,相邻两站之间的距离都是1km。一共设有多少个车站?

(2)在一条全长2km的街道两旁安装路灯(两端也要安装),每隔50m安一盏。一共要安装多少盏路灯?

3、拓展练习

园林工人沿一条笔直的公路一侧植树,每隔6m种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

四、课堂总结。

五、作业:课本P109练习二十四第1、3题。

板书设计:

植树问题

(两端要栽)

全长÷间隔长度=间隔数间隔数+1=棵数

100÷ 5 = 20(个)20+1= 21(棵)

答:一共要栽21棵树。

教学反思

“植树问题”是人教20xx版五年级上册“数学广角”的内容,教材将它分为以下几个层次:“两端都栽”、“只栽一端”、“两端都不栽”、“封闭图形情况”以及”方阵问题”等。本节课要解决的是两端都栽的植树问题,主要目标是向学生渗透一一对应的数学思想,初步感悟“化归”的解题方法,构建植树问题数学模型。设计教学时,我运用“问题导学,互动探究”的教学模式,即以问题情境为载体,进行自主学习,以认知冲突为诱因,展开合作探究,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。根据学生的认知规律,我设计了以下几个环节:

一、观看图片,寻找数学信息,让学生初步认识间隔,感知间隔数与手指数的关系。

二、以一道植树问题为载体,放手让学生自主学习,应用不同方法解决问题,引发学生认知冲突。

三、抓住课堂生成的契机,以生活中植树问题的应用为研究对象,再度质疑,引导学生合作探究植树问题的实质。

四、多层次、多角度的达标测评练习,拓展学生对植树问题的认识。

反思整个教学过程,我认为这节课有以下几点做得比较好:

1、通过自主探索的活动,让学生获得学习成功的体验,增进学生学好数学的信心。结合学生的年龄特点和教学内容,我设计了很多孩子喜闻乐见的教学环节。例如:在问题导入时,让学生根据不完成全的应用题,对缺少条件的应该题大胆进行猜测,激发学习兴趣。再如:自主学习、互动合作这一环节中让学生选择自己喜欢的方法解题、验证“间隔数”与“棵数”之间的规律。

2、渗透一一对应的思想方法,培养学生数学思维能力和解决问题的能力。让学生通过观察、猜测、实验、交流等活动,既学会一些解决问题的一般方法和策略又逐步形成求实态度和科学精神。

3、注意反映数学与人类生活的密切联系。

本节课的教学内容本来就是来自于生活,通过观察生活找出解决这类问题的规律,从而应用于生活。所以,我设计的每一环节都紧扣生活,以解决生活中的问题为主线,有目的地进行数学学习活动,使学生学得有趣,同时,增强了数学学习的应用价值。

4、本课的练习本着由易到难,循序渐进的原则,有以下两个层次:

(1)直接应用,解决比较简单的实际问题。在巩固练习中,我安排学生完成已知间隔数求棵数及已知棵数求间隔数的两道填空题,以及“做一做”中知道总长和间距求棵数的练习,让学生从正反两个方面出发解决简单的实际问题。训练学生双向可逆思维的能力。

(2)现实生活中的许多不同事件都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它。如上楼梯、排队、敲钟、锯木头等,所以在后面的提高练习中,我把这些生活中常见的现象编进题目中,让学生拓宽视野,解决生活中不同现象的“植树问题”。

这节课的不足是过于侧重于植树问题的原理,课堂的练习密度不够,从练习中也反馈出个别学生吃不透的现象。所以今后教学时要注意把握好度,适当进行取舍,照顾好中差生。

五年级小学数学教案 第9篇

教材说明

密铺,也称为镶嵌,是生活中非常普遍的现象,它给我们带来了丰富的变化和美的享受。教材在四年级下册就安排了密铺的内容,通过让学生观察用长方形、正方形、三角形密铺起来的图案,了解什么是密铺。本册教材中,通过实践活动继续让学生认识一些可以密铺的平面图形,会用这些平面图形在方格纸上进行密铺,从而进一步理解密铺的特点,培养学生的空间观念。

整个实践活动分为两个层次:

1.通过动手操作,探索哪些平面图形可以密铺,哪些不能密铺,使学生认识一些可以密铺的平面图形。

由于学生已经了解了密铺概念,教材不再给出密铺的概念及图案,而是直接呈现了学生熟悉的6种平面图形(即圆形、等边三角形、长方形、等腰梯形、正五边形、正六边形),并提出问题哪些图形可以密铺。接着,让学生利用附页中的图形,通过小组合作的形式,任选一种图形拼一拼、铺一铺,探索并找出可以密铺、不能密铺(圆形、正五边形)的平面图形,进一步理解密铺的特点。找出可以密铺的平面图形后,再让学生实际铺一铺,在操作的过程中感受密铺,并感受这些图形的特点。

需要指出的是,这里每次密铺的基础图形都是大小和形状相同的同一种平面图形,两种或两种以上平面图形拼接在一起,也能进行密铺,但教材并不做要求。

2.综合运用已有知识,在方格纸上根据给定的两组图形设计密铺图案,计算出每次密铺中不同平面图形所占的面积,使学生感受数学在生活中的应用,用数学的眼光欣赏美和创造美。

这部分内容包括三部分:

(1)从实际出发引出问题,让学生从两组瓷砖中任选一组在方格纸上设计密铺图案,体验用数学的乐趣。这里的两组瓷砖,一组由两个形状和大小相同、颜色不同的等腰直角三角形组成,另一组由一个平行四边形和一个直角三角形(一条直角边的长度等于平行四边形长边所在的高)组成,前一组密铺可以是用同一种基础图形将平面密铺,后一组密铺则是用两种基础图形密铺平面。

完成设计的方式,可以由学生在方格纸上画出,也可以由教师准备好相应的图形卡片,让学生拼出。建议学生在画或拼摆密铺图案时,要有序地进行。

(2)综合运用有关密铺、面积等方面的知识,统计自己在方格纸上设计的图案中,每种基础图形一共用了多少块,以及所占的面积,运用所学的知识解决生活中的实际问题,进一步体会数学和现实生活的联系,发展学生解决实际问题的能力。

(3)让学生利用附页中提供的图形,自由地设计密铺图案,这种图案可以由一种或两种基础图形组成(也可以由多种基础图形组成,尊重学生的选择,但不要求),通过学生的创作及交流,开拓学生的思维,培养学生用几何图形进行美术创作的想像力,让学生体验自己创作的数学美,培养学生学习数学的兴趣及学好数学的信心。

教学建议

(1)这部分内容可以用1课时进行教学。主要是在数学活动中,借助观察、猜测、验证等方式解决问题。

(2)教师可以在课前搜集一些密铺的图案,也可以事先让学生在生活中寻找一些密铺图案,课上展示给大家,以此帮助学生复习已了解的密铺知识,从直观上为学习新内容做好准备。搜集的图案可有多种,如由形状和大小相同的一种基础图形组成的密铺图案,两种或两种以上基础图形组成的密铺图案,不规则图形组成的密铺图案等。呈现图案后,可以引导学生观察,这些密铺图案是由什么基础图形组成的?

(3)教师提出问题如果密铺平面时只用一种图形,比如圆形、等边三角形、长方形、等腰梯形、正五边形、正六边形(同时出示该图形的彩色卡片并贴在黑板上),请你们猜猜看,哪种图形能用来密铺?引导学生进行猜测和想像,然后再通过铺一铺等操作活动进行验证并获得结论。或者先让学生想一想他们见过的哪些图形能够用来密铺平面,教师根据学生说出的图形呈现相应的图形卡片,然后围绕学生说出的图形,让学生以小组合作的形式动手拼摆,找出哪些图形可以密铺,哪些图形不可以密铺,验证自己的猜测是否正确。

(4)学生汇报验证的结果,并让学生任选一种可以密铺的图形铺一铺,上台展示并与大家交流拼的过程,加深学生对密铺的理解以及对图形性质的认识。

(5)在学生了解可以密铺的图形后,教师可以直接提出问题,让学生用密铺的知识设计地砖图案;
也可以先请学生说一说,生活中哪里用到了密铺。学生可能会有很多答案,大致包括建筑(地砖、篱笆和围墙)、玩具、艺术(图画)等几个方面,让学生体会数学的广泛应用。然后再让学生任选一组瓷砖,在方格纸上设计新颖、美观的密铺图案。教师在巡视的过程中,让先设计完的学生数一数自己设计的图案中,不同的基础图形分别用了多少块,所占面积是多少。

(6)展示作品过程中,引导学生比一比,看看谁的设计更美观、更有新意,激发学生之间互评作品,在交流中理解并接纳别人较好的方法。

(7)汇报交流之后,让学生进行更开放的设计活动,在活动中充分感受数学知识与艺术的密切联系,经历创造数学美的过程。

(8)要注意,后面的教材中会继续安排有关密铺的内容,例如较复杂些的密铺、密铺的方法等等,因此在这里注意不要拔高要求,如图形能够密铺的条件(同一顶点的各个拼接图形角的和为360)会在中学的教材中介绍,这里就不需要让学生研究。

参考资料:

密铺的历史背景

1619年数学家奇柏(J.Kepler)第一个利用正多边形铺嵌平面。

1891年苏联物理学家弗德洛夫(E.S.Fedorov)发现了十七种不同的铺砌平面的对称图案。

1924年数学家波利亚(Polya)和尼格利(Nigeli)重新发现这个事实。

最富趣味的是荷兰艺术家埃舍尔(M.C. Escher)与密铺。M.C. Escher于1898年生于荷兰。他到西班牙旅行参观时,对一种名为阿罕伯拉宫(Alhambra)的建筑有很深刻的"印象,这是一种十三世纪皇宫建筑物,其墙身、地板和天花板由摩尔人建造,而且铺上了种类繁多、美轮美奂的马赛克图案。Escher 用数日复制了这些图案,并得到启发,创造了各种并不局限于几何图形的密铺图案,这些图案包括鱼、青蛙、狗、人、蜥蜴,甚至是他凭空想像的物体。他创造的艺术作品,结合了数学与艺术,给人留下深刻印象,更让人对数学产生另一种看法。

五年级小学数学教案 第10篇

教学目标:

1、通过天平游戏,探索等式两边都加上(或减去)同一个数,等式仍然成立的性质。

2、利用探索发现的等式的性质,解决简单的方程。

3、经历了从生活情境的方程模型的建构过程。

4、通过探究等式的性质,进一步感受数学与生活之间的密切联系,激发学生学习数学的兴趣。

教学重难点:

重点:通过天平游戏,帮助数学理解等式性质,等式两边都加上(或减去)同一个数,等式仍然成立的性质。并据此解简单的方程。

难点:推导等式性质(一)。

教学准备:

一架天平、课件及班班通

教学过程:

一、创设情境,以情激趣

师:同学们,你们玩过跷跷板吗?两只松鼠正玩着跷跷板。突然来了一只大灰熊占了其中一边,结果跷跷板不动了。你们看有什么办法?

学生讨论纷纷。

师:说得很好。今天我们就是在类似跷跷板的天平上做游戏,看看我们从中有什么发现?

二、运用教具,探究新知

(一)等式两边都加上一个数

1、课件出示天平

怎样看出天平平衡?如果天平平衡,则说明什么?

学生回答。

2、出示摆有砝码的天平

3、探索规律

初次感知:等式两边都加上同一个数,等式仍然成立。

再次感知:举例验证。

(二)等式两边都减去同一个数

(三)运用规律,解方程

三、巩固练习

1、完成课本68页“练一练”第2题

先说出数量关系,再列式解答。

2、小组合作完成69页“练一练”第3题。

完成后汇报,集体订正。

四、课堂小结

这节课你学到了什么?学生交流总结。

五年级小学数学教案 第11篇

教学内容:

教材第14~15页。

教学目标:

1、在实践活动中认识奇数和偶数,了解奇偶性的规律。

2、探索并掌握数的奇偶性,并能应用数的奇偶性分析和解释生活中一些简单问题。

3、通过本次活动,让学生经历猜想、实验、验证的过程,结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。

教学重点:

探索并理解数的奇偶性

教学难点:

能应用数的奇偶性分析和解释生活中一些简单问题

教学过程:

一、游戏导入,感受奇偶性

1、游戏:换座位

首先将全班39个学生分成6组,人数分别为4、5、6、7、8、9。我们大家来做个换位置的游戏:要求是只能在本组内交换,而且每人只能与任意一个人交换一次座位。

(游戏后学生发现4人、6人、8人一组的均能按要求换座位,而5人、7人、9人一组的却有一人无法跟别人换座位)

2、讨论:为什么会出现这种情况呢?

学生能很直观的找出原因,并说清这是由于4、6、8恰好是双数,都是2的倍数;而5、7、9是单数,不是2的倍数。

(此时学生议论纷纷,正是引出偶数、奇数的时机)

3、小结:交换位置时两两交换,有的小组刚好都能换位置,像4、6、8、10……是2的倍数,这样的数就叫做偶数;而有的小组有人不能与别人换位置,像5、7、9……不是2的倍数,这样的数就叫做奇数。

学生相互举例说说怎样的数是奇数,怎样的数是偶数。

二、猜想验证,认识奇偶性

活动1

(1)出示题目和情景图:小船最初在南岸,从南岸驶向北岸,再从北岸驶向南岸,不断往返。

(2)提出问题:小船摆渡11次后,船在南岸还是北岸?为什么?

(3)探究活动

学生可能会运用数的方法得出结果,不一定正确。

师:小船摆渡100次后,船在南岸还是北岸?你会怎样做?能保证正确吗?

引导学生运用策略:①列表法;②画示意图法。

三、实践操作、应用奇偶性

我们已经知道了奇偶数的一些特性,现在要用这些特性解决我们身边经常发生的问题。

1、试一试

(1)一个杯子,杯口朝上放在桌上,翻动一次,杯口朝下。翻动两次,杯口朝上……翻动10次呢?翻动19次?105次?请尝试说明理由。

学生动手操作,发现规律:奇数次朝下,偶数次朝上。

师:把杯子换成硬币,你能提出类似的问题吗?

(2)有3个杯子,全部杯口朝上放在桌上,每次翻动其中的两只杯子,能否经过若干次翻转,使得3个杯子全部杯口朝下?

你手上只有一个杯子怎么办?(学生:小组合作)

学生开始动手操作。

反馈:有一小部分学生说能,但是上台展示,要么违反规则,要么无法进行下去。

引导感受:如果我们分析一下每次翻转后杯口朝上的杯子数的奇偶性,就会发现问题的所在。

学生动手操作,尝试发现

交流:一开始杯口朝上的杯子是3只,是奇数;第一次翻转后,杯口朝上的变为1只,仍是奇数;再继续翻转,因为只能翻转两只杯子,即只有两只杯子改变了上、下方向,所以杯口朝上的杯子数仍是奇数。由此可知:无论翻转多少次,杯口朝上的杯子数永远是奇数,不可能是偶数。也就是说,不可能使3只杯子全部杯口朝下。

学生再次操作,感受过程,体验结论。

2、活动2

出示两组数:圆中的数有什么特点?正方形中的数有什么特点?

(1)学生独立猜想,完成“试一试”,小组内汇报交流,然后统一意见进行验证(要求:验证时多选几组进行证明)。

如果两个数相减呢?如果是连加或连减呢?

汇报成果:

(1)奇数﹢奇数=偶数

(2)奇数-奇数=偶数

(3)奇数+奇数+……+奇数=奇数(奇数个)

偶数+偶数=偶数偶数-偶数=偶数奇数+奇数+……+奇数=偶数(偶数个)

奇数+偶数=奇数奇数-偶数=奇数偶数+偶数+……+偶数=偶数

你能举几个例子说明一下吗?

(学生的举例可以引导从正反两个角度进行)

(2)运用判断下列算式的结果是奇数还是偶数。

10389 + 20xx:,46786-5787:,11231+2557+3379+105:

11387 + 131:,60075-997:,335+7757+223+66789+73:

268 + 1024:,9876-5432:,2+4+6+8+10……+998+1000:

3、游戏。规则如下:用骰子掷一次,得到一个点数,以A点为起点,连续走两次,转到哪一格,那一格的奖品就归你。谁想上来参加?

学生跃跃欲试……如果继续玩下去有中奖的可能吗?谁不想参加呢?为什么?

生:骰子始终在偶数区内,不管掷的是几,加起来总是偶数,不可能得到奖品。

是呀,这是老师在街上看到的一个,他就是利用了数的奇偶性专门骗小孩子上当,现在你有什么想法?

学生自由说。

四、课堂小结,课后延伸。

1、说说我们这节课探索了什么?你发现了什么?

2、那如果是4个杯子全部杯口朝上放在桌上,每次翻动其中的3只杯子,能否经过若干次翻转,使得4个杯子全部杯口朝下?最少几次?

五年级小学数学教案 第12篇

教学目的:

1、理解分数的基本性质;

2、初步掌握分数性质的应用;

3、培养学生观察——探索——抽象——概括的能力;

4、渗透事物是相互联系、发展变化的辩证唯物主义观点。

教学重点:

从相等的分数中看出变与不变,观察、发现、概括其中的规律。

教学难点:

形成对分数的基本性质的统一认知。

教学准备:多媒体,自制演示教具。

教学过程:

一、激趣引新:

1、有位老爷爷把一块地分给三个儿子。老大分到了这块地的1/3,老二分到这块地的2/6,老三分到这块地的3/9。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑起来,给他们讲了几句话,三兄弟就停止了争吵。你知道阿凡提为什么会笑?他对三兄弟说了那些话?你想知道吗?这节课我们就来解决这个问题。

2、在下面的()中填上合适的数。

1÷2=(1×5)÷(2×())=(1÷())÷(2÷4)

同学们现在已经能用分数的知识来解决问题了。

二、启发引导,探索新知。

1、下面是六年级三个班的同学到三块同样大小面积的正方形地里去种树,哪个班种植的面积大一些呢?

通过图形的平移、旋转等方法看出三个班种植面积一样大。

2.引导观察得出结论。

(1)通过拼图得到1/2=2/4=4/8

(2)引导观察、比较,提出问题:分子,分母都不相同,它们的大小为什么相同呢?

(3)引导思考探索变化规律:

从左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8

反过来看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

3.共同讨论,引导学生抽象概括出分数的基本性质:

(1)怎么做能使分数的分子和分母发生变化,而分数的大小都不变呢?

(2)变化时同时乘或除以小数可以吗?

(3)0可以吗?3/4=3×0/4×0=?(分数的分母不能为0,在除法里0不能作除数,分子和分母都乘或除以相同的数,这个数不能是0。)

归纳分数基本性质:分数的分子和分母都乘或除以相同的数(0除外)分数的大小不变。

4.学习分数的基本性质以后,感觉过去我们学过类似的性质是什么呢?(商不变的性质)

(1)练习在□中填上合适的数

1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)

(2)你能把1÷2这个除法算式改写成分数形式?

你能用今天所学的知识解决老爷爷分地的问题吗?(学生交流、汇报)

5.组织练习

(1)判断:

1/5=1/5×3=1/5()

5/6=5×2/6×3=10/18()

8/12=8×4/12÷4=32/3()

2/5=2+2/5+2=4/7()

3/4=3÷0.5/4÷0.5()

分数的分子和分母都乘或除以相同的数,分数的大小不变。()

(2)画一画、填一填

(3)填空

1/2=1×()/2×()=6/()

10/24=10○()/24○()=()/12

15/60=()/203/()=9/12

6/18=()/()=()/()(有多少种填法)

6.通过练习在此性质中哪些是关键词?

7.巩固练习(选择你喜欢的一题来做)

(1)与1/2相等的分数有多少个?想象一下把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?

(2)9/24和20/32哪一个数大一些,你能讲出判断的依据吗?

三、课堂总结

今天这节课同学们学了分数的基本性质,有什么感想呢?回家讲给爸爸妈妈听好吗!同时希望同学们把今天所学的知识运用到今后的学习和生活中去,做一个生活的有心人。

四、课堂作业:练习十四第1——3题。

板书设计:

分数的基本性质

1/2=1×2/2×2=2/4=2×2/4×2=4/8

分数的分子和分母同时乘以一个不为0的数分数的大小不变

4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

分数的分子和分母同时除以一个不为0的数分数的大小不变

综上所述分数的基本性质是:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

五年级小学数学教案 第13篇

一、学习目标

(一)学习内容

“正方体的认识”是《义务教育教科书数学》(人教版)五年级下册第三单元第20页例3以及课后做一做。本节内容是在学生已经直观的认识了长方体、正方体等立体图形的基础上进行教学的。学生能通过实物或模型辨认正方体,知道正方体有6个面,每个面都是正方形。在教学正方体时,应激活经验,回顾特点,对比长方体特点,感知“正方体是特殊的长方体”。

(二)核心能力

能运用迁移类推的学习方法,通过观察、操作,认识正方体,建立空间观念,提高分析对比,抽象概括的能力。

(三)学习目标

1.在认识长方体的基础上,通过观察正方体、动手操作折正方体,自主探究正方体关于面、棱、顶点的特征,建立空间观念。

2.通过对比分析长方体和正方体的特征,抽象概括出长方体和正方体之间的关系。

(四)学习重点

掌握正方体的特征,理解长方体和正方体的关系。

(五)学习难点

建立空间观念,形成立体图形的初步印象。

(六)配套资源

实施资源:《正方体的认识》名师教学课件,各种正方体实物,长方体模型,剪好书本第123页的正方体展开图。

二、学习设计

(一)课前设计

(1)长方体的特征有哪些?我们是从几方面来认识它的?请自己整理出来。

(2)请找找生活中的正方体物品,并思考:关于正方体你都知道了哪些知识?

(二)课堂设计

1.谈话导入

师:课前让同学们寻找生活中的正方体物品,谁来和大家分享一下你找到了什么?

师:生活中有许多物体的形状是正方体,正方体也叫立方体,这节课我们一起来认识它。板书课题。

【设计意图:结合生活实际,学生对正方体已有一定的认识,因此通过分享学生在生活中找到的正方体,使学生对正方体有了初步的了解,激发了进一步学习正方体的兴趣。】

2.问题探究

(1)观察模型,探究特征

师:长方体和正方体都属于立体图形,回想一下,我们是从几方面来认识长方体的?

(面、棱、顶点,长宽高)

师:对于正方体,你们准备从几方面来认识?

生自由发言。

师:现在请你们借助手中的正方体物品来观察研究,看看正方体都有哪些特征?

同桌合作,自主探求正方体的特征。

交流汇报。(汇报时重在交流探究的过程和方法)

预设:

①正方体有6个面,每个面都是正方形并且6个面都相等;

②正方体有12条棱,每条棱都相等;

③正方体有8个顶点。

小结:同学们从棱、面、顶点三方面进行研究,得出了“正方体是有6个完全相同的正方形围成的立体图形,12条棱长度相等”的结论。

(2)制作模型,加深认识特征

师:认识了正方体的特征,现在请你们动手制作一个正方体,制作完后,量出它的棱长是多少厘米,并向同桌介绍你制作的正方体的特征。

用剪好的书本第123页的正方体展开图做一个正方体。

展示学生作品分享制作感想。

【设计意图:学完长方体后,学生已明确了面、棱、顶点的概念,知道了从哪些方面探究图形特征,因此放手让学生自主探究,充分经历自主探究的过程,通过观察、动手,学生亲身感知正方体这个立体图形。考查目标1】

(3)对比观察,探究长方体和正方体的关系

师:我们都是从面、棱、顶点来认识长方体和正方体,它们之间有什么相同点和不同点呢?请4人小组,用你们喜欢的方式整理出来。

交流汇报后,教师用表格的形式进行整理。

引导归纳长方体和正方体的关系:正方体可以看成是长、宽、高都相等的长方体。

3.巩固练习

(1)第20页的.做一做。用棱长为1cm的小正方体搭一搭。

①搭一个稍大一些的正方体,至少需要多少个小正方体?动手试一试。

②用12个小正方体搭一个长方体,可以有几种不同的搭法?记录搭的长方体的长、宽、高。

③搭一个四个面是正方形的长方体,其余两个面有什么特点

4.课堂总结

师:通过这节课的学习,你有什么收获?

小结:从面、棱、顶点三方面认识了正方体,有6个面,都相等,12条棱也都相等,有8个顶点,正方体是特殊的长方体。

五年级小学数学教案 第14篇

教学目标

1.理解除数是小数的除法的算理,掌握除数是小数的计算法则

2.培养学生的计算能力

教学重点

掌握除数是小数的除法的计算法则

教学难点

理解把除数是小数的除法转化为整数除法的道理

教学过程

一、铺垫孕伏

(一)指名板演,集体订正:5628÷67

(二)演示课件:商不变的性质

(三)教师导入:除数是整数的除法,我们已经掌握了它的计算方法,那么除数是小数的

除法该怎样计算呢?这节课我们就来解决这个问题.

(板书课题:除数是小数的除法)

二、探究新知

(一)教学例4

1.演示课件:一个数除以小数

2.尝试不同思路(把题里的米数都改写成厘米数来计算)

米=5628厘米

米=67厘米

5628÷67=84(条)

教师说明:这种方法是正确的,但是有一定的局限性

3.思考:为什么要把除数和被除数都扩大100倍呢?扩大1000倍可以吗?

4.练习:继续演示课件:一个数除以小数

5.计算除数是小数的除法的关键是什么?转化时以谁为标准?

6.小结计算方法

计算除数是小数的除法,先移动除数的小数点,使它变成整数.看除数的小数

点向右移动几位,被除数的小数点也向右移动几位,然后按除数是整数的除法法则进行计算.

(二)教学例5

例5

÷

1.学生试算

2.集体订正

教师强调:(1)位数不够用“0”补足.

(2)商的小数点和被除数的小数点对齐.

3.练习

÷

26÷

(三)总结除数是小数的小数除法的计算法则

除数是小数的除法,先移动除数的小数点,使它变成整数;
除数的小数点向右

移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用“0”补足);
然后按照除数是整数的小数除法进行计算.

三、课堂小结

这节课我们学习了什么?除数是小数的除法和除数是整数的小数除法有什么联

系?通过今天的学习,你有什么收获?

四、课堂练习

(一)填空

除数是小数的除法,先移动_____小数点,使它变成整数;
除数的小数点向右移动

几位,_____也向右移动几位,位数不够的,在被除数的末尾_____补足;
然后按照除数是_____的小数除法进行计算.

(二)把下面的题变成除数是整数的除法

÷=□÷12

÷=□÷□

÷=□÷32

161÷=□÷□

(三)计算下面各题

÷=

210÷

÷

五、布置作业

(一)计算下面个题.

÷

÷

÷

÷

÷

÷

(二)世界上最大的鸟是鸵鸟,体重达135千克,最小的鸟是蜂鸟,体重只有千克.鸵鸟的体重是蜂鸟的多少倍?

六、板书设计

一个数除以小数

例4做一条短裤要用布米,米布

例5计算

÷

可以做多少条短裤?

答:米布可以做84条短裤

一个数除以小数(二)

五年级小学数学教案 第15篇

设计说明

在本节教学中,为了突破教学的重、难点,给学生创设良好的学习情境,让学生运用已有的生活经验,通过观察、实验、归纳和应用等数学活动,进一步发展空间观念,具体设计说明如下:

1.尊重学生,相信他们能行。

每个学生都有自己的生活背景,家庭环境和一定的文化感受,从而导致不同的学生有不同的知识基础、思维方式和解决问题的策略。教师应充分的相信学生通过自己的努力能够完成所学的内容。学生已经获得了大量的知识基础和生活经验,所以本设计充分相信学生,把大量的时间留给学生。对容积概念的理解,体会容积和体积之间的关系,推导容积单位之间的关系等,都引导学生自己去概括总结。教师真正起到组织者和引导者的作用。

2.将生活中的问题与数学学习有机地结合。

联系生活实际展开教学,能让学生感受到学习数学的必要性,也能提高学生学习数学的兴趣。本设计利用课件让学生感受生活中的容器,如集装箱、电冰箱、水杯、包装盒、油桶等,并结合学生课前准备的一些矿泉水瓶、饮料盒等,说一说这些物品有什么特点,进而引出容积的含义。以问题的形式,将生活中的知识与数学学习有机结合,让学生感受到学习数学的必要性和趣味性,这样不但能加深学生对容积概念的认识,还能使学生进一步理解物体的体积和容积的区别与联系。然后通过课件展示探究过程,加深学生对容积单位的理解。

课前准备

教师准备

PPT课件

学生准备

矿泉水瓶饮料盒等

教学过程

复习旧知,导入新课

师:同学们,之前我们学习了体积和体积单位,谁来说一说什么是体积?常用的体积单位有哪些?它们之间的进率是多少?正方体和长方体体积的计算公式是什么?

生1:物体所占空间的大小叫做物体的体积。

生2:常用的体积单位有立方厘米、立方分米、立方米,每相邻两个体积单位之间的进率是1000。

生3:V正=a3V长=abh

师:同学们对前面学习的知识掌握得非常好,相信对今天学习的新知识会掌握得更好。今天我们来学习容积和容积单位。(板书课题:容积和容积单位)

设计意图:从学生已有的知识经验开始教学,有利于引导学生对新旧知识间的联系的理解,激发学生的学习兴趣。

⊙联系生活,探究新知

1.容积的含义。

(1)利用课件让学生感受生活中的容器,如集装箱、电冰箱、水杯、包装盒、油桶等。

结合老师让学生课前准备的一些矿泉水瓶、饮料盒等,说一说这些物品有什么特点。

(都能够容纳物体)

(2)说一说生活中你还见过哪些物品能够容纳物体。

师:能容纳其他物体的物品,称为容器。

师:大家观察矿泉水瓶、饮料盒的包装盒上有许多信息,你知道它们表示什么意思吗?

2.比较容积和体积。

(1)自学教材38页容积和容积单位,然后说一说你从教材中学到了什么。

①容器所能容纳物体的体积,通常叫做它的容积。

②计量容积一般用体积单位,但是计量液体的体积,如水、汽油等,常用容积单位升和毫升。

③长方体容器容积的计算方法和体积的计算方法相同,一般从容器的里面测量长、宽、高。

(2)谁来举例说一说什么是容积呢?

(3)质疑:是不是所有的物体都有容积呢?

明确:所有的物体都有体积,但只有里面是空的、能够装东西的物体才有容积,也就是说物体一定都有体积,但不一定都有容积。

(4)测量容积。

小组内讨论:怎样测量一个长方体空盒子的容积。

方法一把盒子装满水,再把水倒入量筒里,直接可以测量出盒子的容积。

方法二从里面测量长、宽、高分别是多少。

讨论:为什么要从里面测量长、宽、高?

明确:容积是物体内部所能容纳物体的那一部分空间的大小,体积是物体外部所占空间的大小。

师:从这句话中,我们知道物体的体积和容积有哪些不同点?

(体积要从容器外面测量数据;
容积要从容器里面测量数据)

3.容积单位。

(1)计量容积时一般用体积单位,但是计量液体的体积,如药水、汽油等,常用容积单位升和毫升。

(2)单位间的进率。

板书:1L=1dm3

1mL=1cm3

1L=1000mL

设计意图:

通过课件展示和探究过程加深学生对容积单位的理解。

五年级小学数学教案 第16篇

教学目标:

1、使学生理解长方体和正方体体积公式的推导,能运用公式进行计算。

2、培养学生空间和空间想象能力。

教学重点:

长、正方体体积公式的推导。

教学难点:

运用公式计算。

教学用具:

1立方厘米学具。

教学过程:

一、复习

1、什么叫物体的体积?

2、常用的体积单位有哪些?

3、什么是l立方厘米、l立方分米、l立方米?

二、导入新课

1、导入

我们知道了每个物体都有一定的体积,我们也知道可以利用数体积单位的方法计算物体的体积。

要知道老师手中的这个长方体和正方体的体积?你有什么办法? (用将它切成1立方厘米(1立方分米)的小正方体后数一数的方法。)

说明:用拼或切的方法看它有多少个体积单位。但是在实际生活中,有许多物体是切不开或不能切的,如:冰箱、电视机等,怎样计算它的体积呢?他们的体积会和什么有关系呢?这节课我们就来研究长方体和正方体的体积。(板书课题)

2、新课

(1)请同学们任意取出几个1立方厘米的正方体在小组里合作摆出一个长方体,边摆边想:你们是怎么摆的?你们摆出的长方体体积是多少?

(2)板书学生的:(设想举例)

体积每排个数排数 排数 层数

4 4 1 l

8 4 2 1

24 4 3 2

(3)观察:每排个数、排数、层数与体积有什么关系?

板书:体积=每排个数×排数×排数×层数

每排个数、排数、层数相当于长方体的什么?

因为每一个小正方体的棱长是l厘米,所以,每排摆几个小正方体,长正好是几厘米;摆几排,宽正好是几厘米;摆几层,高也正好是几厘米。

(4)如何计算长方体的体积?

板书:长方体体积=长×宽×高

字母公式:V=a b h

五年级小学数学教案 第17篇

学习目标

1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。

2、结合现实情景,体验数学与日常生活的密切联系,激发学生对数学的兴趣

学情分析重点、难点:

在现实情景中理解正负数及零的意义。

易混点、易错点:感受用正数和负数来表示一些相反意义的量

学生认知基础:生活中见到过负数。

时间分配学20讲10练10

教法学法

自主探索法,练习法,讲授法。

教学准备

第一课时

一、自学例1

1、通过查资料了解“℃”和“℉”的含义,并学会看温度计的方法。

2、从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?

3、上海和北京的气温一样吗?不一样在哪儿?

4、那你知道在数学上是怎样区分和表示这两个不同的温度的呢?

二、自学例2

1、了解海拔的意义。

2、思考从图上你知道了什么?

3、试着用今天所学的知识来表示这两个地方的海拔高度。

学生活动教师助学课后改进

第一课时

第一板块:学生汇报预习情况。第二板块:根据预习情况,学习例1

(1)交流“℃”和“℉”的含义,说明我国是用“℃”来计量温度的,并指导看温度计的方法。

(2)交流:从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?

(3)上海和北京的气温一样吗?不一样在哪儿?

(5)那你知道在数学上是怎样区分和表示这两个不同的温度的呢?(零上4摄氏度记作+4℃或4℃,零下4摄氏度﹣4℃)

第三板块:正数和负数的读、写方法。

根据课本要求,记住读写方法。

学生看温度计,选择合适的卡片表示各地气温。

第三板块:交流学习例2

交流:从图上你知道了什么?

交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?

共同小结:以海平面为基准,比海平面高8844米,通常称为海拔8844.43米,可以计作+8844.43米;
比海平面低155米,通常称为海拔负155米,可以计作﹣155米。

学生根据今天所学知识把这些数分类。

正数都大于0,负数都小于0。

先指名读一读,再用正数或负数表示图中数据。

先读一读,再说说这些海拔高度是高于海平面还是低于海平面。

一:教学例1

1.出示例1的三幅分别显示三个城市某一天最低气温的温度计图。

根据学生的预习,共同学习交流认识新知。

(4)上海的气温是零上4摄氏度,北京的气温是零下4摄氏度。以0摄氏度分界,一个在0摄氏度以上,一个在0摄氏度以下。一上一下,正好相反。

2.教学正数和负数的读、写方法。

“+4”读作正四,“+4”的正号也可以省略不写,直接把“+4”写成“4”。“﹣4”读作负四。

3.指导完成“试一试”。

(卡片上分别写有+11℃、﹣11℃、19℃、+19℃、﹣7℃、+7℃)

二:教学例2

1.师:同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。

2.出示例2中珠穆朗玛峰与吐鲁番盆地的海拔高度图。

三:初步归纳正数和负数。

⑴出示+4、﹣4、﹣7、﹣11 、19、+8844.43、﹣155这些数,提出要求:前面,我们用这些数来表示零上和零下的温度以及海平面以上和以下的高度。大家仔细观察这些数,你能将它们分分类吗?

⑵小结:像+4、19、+8844.43这样的数都是正数。像-4、﹣7、﹣11 、-155这样的数都是负数;
而0既不是正数,也不是负数。

⑶提问:正数、负数和0比一比,它们的大小关系怎样?

四:练习

做“练一练”1,2题

2.做练习一第1题。

3.做练习一第2题。

4、练习一4、5、6题。

五:作业

练习一第3题。

交流认识新知。

正数和负数的读、写方法。

根据课本要求,记住读写方法。

交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?

正数、负数和0比一比,它们的大小关系怎样?

正数都大于0,负数都小于0。

课后反思

得:

首先,对教材的编排作了重新的审视。在教材编排中,我们可以观察到,在学习负数的过程中,学生更多的是经历“具体情境中的数——解释数的意义”这样的过程。在教学中我设计了通过观察生活中的盈亏、收支、增减及朝两个相反的方向运动中应用负数进一步理解负数的意义,明白用正负数可以表示一些具有相反意义的量,从而让学生体验负数产生的原因,接着引导学生列举生活中正负数应用的实例。

失:

《认识负数》单元的教学看似简单,教起来似乎觉得轻松,学生学习起来也看似轻松,可在解决实际问题的时候,却会发现有各种各样的问题出现。

由于正负数表示的是相反意义的量,如何帮助学生正确的解决实际生活情境下的正负数问题,这是值得我们在教学中进行思考的问题。由于问题的存在,不得不想一些办法去解决这样的问题。

五年级小学数学教案 第18篇

教学内容:

义务教育课程标准实验教科书《数学》五年级下册第38-40页体积和体积单位。

教学目标:

1、使学生感悟体积的空间观念,建立体积概念,掌握常用的体积单位的意义;
学会用体积单位来描述物体的大小;
能合理估计物体的体积的大小。

2、通过学生的观察思考、交流探究等学习活动,让学生在经历物体体积概念的形成过程,体验和感悟空间观念。

3、让学生在学习活动中学会学习,获得成功的体验,培养学生的应用意识,建立学生的学习自信心。

教学重点:

形成体积的概念和掌握常用的体积单位。

教学难点:

形成体积概念。

教学准备:

两人一份学具(1立方分米和1立方厘米的正方体模型);
三把米尺等。

教学过程:

课前谈话:同学们,在我们的生活中,有很多看似平常的事物,如果我们细心去观察和思考,总能发现一些不寻常的知识,这节课你们愿不愿意和老师一起去观察和思考?

一、抓住体积概念本质,就地取材,创设生活情境。

师:“同学们,现在你们观察一下自己的抽屉,说一说你们抽屉里有些什么?”

师:“估计一下,你们现在的抽屉还能放些什么?能放多少?”

师:“为什么你们的抽屉还能放东西,说明什么?你能用一句话说一说吗?”

〔设计意图:通过引导观察和思考,让学生体验抽屉里有“空间”。将空间这一概念形象化,具体化,丰富学生的空间表象。〕

师:“抽屉没塞满说明抽屉还有空间,如果东西放满了,也就没有空间。从有空地儿到没有空间说明什么?”

师:“在你们的抽屉里再放一个书包或一些书,能让你的抽屉变得满满的,也就是说书包能占抽屉的空间。发挥你们的想象,你们抽屉的那点儿空地或者说空间能放哪些物品?

师:“书包可以把抽屉的空间占了,几十本书也能把抽屉的空间占了,放上一箱的酸奶同样也可以把抽屉的空间占了。……说明什么?”

物体都会占空间,大家举例说一说物体占空间的现象。

〔设计意图:通过交流和想象,让学生理解物体是可以把空间给占了的,也就是说物体是要占一定的空间的。〕

师:“物体都会占空间,是不是物体所占空间都一样呢?”

师:“物体所占的空间大小不一样,有的物体占空间大些,有的物体占空间小些,物体所占空间的大小叫做物体的体积。”

教师板书:物体所占空间的大小叫做物体的体积。

〔设计意图:由“空间”到“物体要占空间”,再由“物体要占空间”到每一样物体所占空间多少的不一样,引出物体的体积概念,步步相扣,层层推理,较好地处理好了体积概念的抽象。以学生天天相见,日日接触的抽屉、书包为学习素材,学生学习亲切,又好奇。熟而不能再熟的身边事物也有值得讨论和学习的问题,自然这样的学习是学生最愿接受学习方式,也最易让学生理解和体会学习的内容和学习方法。〕

二、找准学生的学习起点,创设精准的问题情境,探索学习常用体积单位,深化理解物体的体积概念。

师:“物体占空间多,那个物体的体积就大,物体占空间少,那个物体的体积就小。”

师:“拿出你们的书包或新华字典,摸一摸它们的大小,感觉一下自己书包或新华字典体积的大小。”

师:“想一想,你能用手比划着告诉你的同桌,你的书包或字典有多大吗?试一试。”

学生活动后,点同学分别到讲台上比划着告诉大家自己的书包或字典的大小。

师:“你们知道他们的书包有多大了吗?”

师:“谁能用打电话的形式告诉我,他们的书包有多大?”

师:“想出办法来了吗?其实我们不是没有办法,请同学们打开课本第39面,看一看书,再想一想,然后大家议一议,找到方法了就告诉老师一声。”

设计意图:其一、问题情境是引导学生有效学习的保证,从学生的知识起点创设出学生的问题情境能较好的激发学生的探究学习的动力。学生在认识了体积概念后,用直观形式来描述物体体积应该说是不成问题的,用手势比划一个物体的大小,对五年级的学生来说经验是非常丰富的,而用电话的形式来告诉老师物体的体积,对没有学习体积单位的学生来说是一个挑战。描述物体的体积需要个标准,而这个标准便是体积单位,因为学生没有这个标准,所以学生完不成用电话的形式告诉别人物体的体积,也因为需要,学生的探究欲也越强,此时让学生自主学习课本会收到较好的学习效果。其二、学生的学习目的不仅是从教师那得到解决问题的结果,他们需要的是形成学习的动力和学习的方法,指导阅读教材,学会自主学习也是课堂教学的一个重要教学目标。这一环节的设计体现了教学对学生学习的兴趣的鼓动性和对学习方法的指导性。

通过学生独立阅读教材和同伴合作交流,让学生从书中找到解决问题的方法。引出大家对“立方米、立方分米、立方厘米等体积单位的认识、理解和体验。〕

师:“在我们的生活中要用到体积单位,如立方厘米、立方分米、立方米,它们都是描述物体大小的体积单位。书上是怎样规定1立方厘米、1立方分米和1立方米的?找出来,并说一说。”

观察1立方分米和1立方厘米的正方体模型,然后再用手势比划一下它们的大小。同一小组的同学可以互相进行学习。

学生自由活动,探索和体验1立方厘米、1立方分米、1立方米的大小。

全班交流自己探索学习的情况。

师:“1立方厘米是怎样规定的?用手势比划一下,说一说什么物体的体积大约是1立方厘米?”

师:“1立方分米是怎样规定的?用手势比划一下,说一说什么物体的体积大约是1立方分米?”

师:“1立方米是怎样规定的?用手势比划一下,说一说什么物体的体积大约是1立方米?”

师:“1立方米,大家比划起来有一定的困难,我们可以一起来做。我这儿有三把米尺,我让几个同学和我一起,用这几把尺借助教室的一个墙角共同来做一个1立方米的空间。”

师:“1立方米的空间到底有多大,老师想让几个同学站到我们做的这个1立方米的空间里去,看一看可以站多少同学?”

师:“大家不站不知道,现在我们的同学进去了,发现没有,1立方米的空间还真不小,整整一个小组的人都能挤进去,大家明白1立方米了吗?现在大家再估一估1立方米的空间可放多少物品?”

设计意图:学生对一个新的概念的接受和形成需要不断地体验和强化,而操作性的体验强化可以提高学生形成新概念的效果。对像1立方厘米、1立方分米和1立方米这样的规定性知识虽然不需要学生的探究和讨论,但采用学生愿意接受的活动方式(如读一读、说一说、估一估、比划比划等)去解读知识和理解概念,体验概念是必要的。〕

师:“你们能用1立方厘米、1立方分米和1立方米等常用的体积单位来描述物体的大小吗?试一试估计一下身边物体的大小。”

学生交流尝试用体积单位描述身边物体的大小。

三、引导学生反思整理,形成体积概念。

师:“通过今天的学习你知道了哪些知识?哪些知识你觉得很重要?通过今天的学习你能解决生活中的哪些问题?你还想知道有关体积的哪些知识?在今天的学习中,你最感兴趣的学习活动是什么?”

设计意图:引导学生进行反思性学习应该引起教师的关注,在教学过程中,除了让学生经历探索新知的过程,还应关学生对自己学习过程中的回顾和反思,这一环节缺失的课是不完整的课。反思整理让学生理清所学知识,感悟学习过程,体会学习方法,积累学习经验。同时在学习反思中,也让学生体验到学习的乐趣,增加学生的学习自信心。〕

四、启发课后观察操作,深化巩固课堂知识,培养学生自主学习意识和能力。

师:“今天大家的学习很投入,也学了不少有关物体体积的知识,我也很高兴。其实学习不单是在课堂上学习,也可以在课外学。比如今天学习后,大家就可以去观察一下生活中的一些物品所占空间,想一想怎样用今天所学的体积单位来描述它,如一枝钢笔大约有20立方厘米等。”

师:“课后,同学们也可以做一个棱长是1分米的正方体和一个棱长是1厘米的正方体,比较一下1立方分米和1立方厘米的大小。我相信同学们的课外学习会比课堂上更认真,更投入,会有很多发现和收获。”

设计意图:将学生的学习从课堂引到课外,由他主学习转到自主学习应该是教师教学的一种境界,是教师终身追求的目标。有效的教学需要我们在设计中去预设,在实践中去尝试。

五年级小学数学教案 第19篇

教学目标:

学生进一步掌握三步混合运算的运算顺序,逐步形成计算技能,经历分析数量关系的过程,巩固解决问题的策略,培养数学思维能力和解决问题的能力。

教学重难点:

掌握三步混合运算的运算顺序,巩固解决问题的策略。

教学过程:

一、计算训练

1、揭示课题。

这节课我们继续来练习混合运算,完成练习十一上的练习。(板书课题)

2、口算:

720÷90 484÷2 450÷50

28+42 3×48 40÷2

360×2 65-17 56+8

3、计算下面各题。指名说说混合运算的运算顺序是怎样的?

完成练习十一第9题。

学生独立计算,提醒自觉验算。

4、练习十一第10题。

说说每组中两道算式的相同和不同的地方,再判断哪道算式的得数大。

通过计算检验。

二、解决问题练习

1、练习十一第11、12题。

学生独立解答。

反馈交流各自的解题思路。说说是怎样整理题目中的条件和问题的,怎样分析数量关系的。

2、练习十一第13题。

先让学生独立完成估算,并说说是怎样估算的。

再列式算出结果,并把它与估算的结果比较。

3、练习十一第14题。

学生读题,独立解答。

反馈解题思路。

引导思考“你还能提出什么问题”。

学生提出问题并解答。

三、课题总结

通过今天的练习,你有什么收获呢?

教学反思:

四则混合运算

这一单元的目标是这样定的:

1、使学生掌握含有两级运算的运算顺序,正确计算三步式题。

2、让学生经历探索和交流解决实际问题的过程中,感受解决问题的一些策略和方法,学会用两、三步计算的方法解决一些实际问题。

3、使学生在解决实际问题的过程中,养成认真审题、独立思考等学习习惯。

从教参的教学目标定位来看,应该是既注重两级运算的运算顺序教学,又要重视解决问题的一些策略。然而结合我们学生的学习实际情况来看,两样都已初步的感受过,但又不是很深入,如:四则运算的计算顺序包括带括号的计算顺序都在平时的练习中曾经碰到过,但不是很多(但有的学生在家长的帮助下对于先乘除后加减的运算顺序了然于胸了)。所以是不是把四则混合运算顺序作为重点来教我真的曾不止一次的怀疑过。让我怀疑动摇的还有一个原因就是学生解决问题的能力太差,新课程一线教师都清楚现在学生解决问题能力的欠缺。所以,这一次四则运算知识的教学也正是加强学生解决问题能力训练的一次好机会,与我有这种相同想法的教师还真不少,认为还是有必要侧重解决问题的策略教学。

在教学式题过程中,我要求学生用先算,再算,最后算来口述式题的运算顺序,减少运算顺序的错误,同时也加强学生语言表达能力。写作业时还要求学生根据式题的运算顺序用简单的画顺序线,以增强运算顺序的形象感。如:第11页例题5:先说出各题的运算顺序,再计算。

(1)42+6(12-4)

(2)42+612-4

口述顺序是:先算括号里的减法,再算口述顺序是:先算乘法,再算加法。最后括号外的乘法,最后算括号外的加法。算减法。

而在教两三步计算解决简单的数学实际问题时,我先要求学生口述解题思路,让其明白列综合算式应先算什么,再算什么,最后算什么,把抽象的、明理的东西搞得的尽可能的形象,从而更接近于小学生的实际。

只有多巩固练习,就能熟能生巧,做到四则运算式题的顺序无误,列综合算式条理清晰,学生分析问题、解决问题的能力得到了提高,更大的收获是差生做式题的计算减少了不必要的错误。

五年级小学数学教案 第20篇

教学目标:

1、结合解决问题理解公因数和最大公因数的意义,学会求两个数的最大公因数的方法。

2、⑴在探索公因数和最大公因数意义的过程中,经历观察、猜测、归纳等数学活动,进一步发展初步的推理能力。在解决问题的过程中,能进行有条理、有根据地进行思考。

⑵学会用公因数、最大公因数的知识解决简单的现实问题,体验数学与生活的密切联系。

3、在学生探索新知的过程中,培养学生学好数学的信心以及小组成员之间互相合作的精神。

教学重点:理解公因数与最大公因数的意义,用短除法求最大公因数的方法。

教学难点:找公因数和最大公因数的方法。

教学过程:

一、情境导入

师:我们鲸园小学的校本课程开展的丰富多彩,同学们都报了自己喜欢的课程去学习,这样更有利于我们充分的展示自己的爱好特长。我们四五班就是每次校本课程的剪纸活动班,你喜欢剪纸吗?瞧,这是老师搜集了一些同学们在活动中的好作品。(课件展示剪纸作品)

师:现在我们来制作奥运福娃。第一步必须先裁好纸张。老师这里有一张长方形的纸长12厘米,宽18厘米。把这张纸剪成边长是整厘米的正方形,猜猜看,要想剪完后没有剩余,正方形的边长可以是几厘米呢?(学生猜)

师:这只是我们的猜测,你要用具体的事实来说服大家。

二、解决问题

1、师:到底哪位同学的猜想是正确的呢?为了验证一下,请每个组拿出准备好的学具,用小正方形纸片(要求学生剪成彩色的)在长方形的纸上摆一摆,把摆的情况记录下来,看有几种不同的摆法。

用手中的学具摆摆看。(学生分组进行拼摆并记录,在小组内进行交流)。

2、师:请每个组汇报一下你们摆的结果。

小组汇报

师:如何剪才能没有剩余?

师:那么这张纸能剪几张?

师:还有其他剪法吗?(2、3、6让学生充分进行交流)

师:请大家认真观察我们摆的结果,你有什么发现?这些1、2、3、6与12和18有什么关系?我们能不能从12和18的因数上来解释上面的剪法呢?

独立观察,总结规律,教师根据学生的发言进行小结。

师:也就是说,要想正好摆满,正方形纸片的边长数应既是12的因数,也是18的因数。所以,1、2、3、6是12和18的公有的因数,我们可以把这4个数叫做12和18的公因数,公因数中最大的数是几?

师:我们把这个数称为12和18的最大公因数

师:为了更形象地表示出1、2、3、6与12和18的关系我们可以用集合圈的形式表示出来。出示相交的集合圈

(用集合圈的形式分别板书12和18的因数,然后把两个集合圈连起来,用交集的形式板书12和18的公因数。)

师:中间部分1、2、3、6既是12的因数,也是18的因数。它们是12和18的公因数,其中6最大,是24和18的最大公因数。(出示课件)

3、怎样找12和18的公因数和最大公因数呢?请同学们根据已有的知识在小组内合作探索一下找公因数的方法

学生探索并交流。

4、练一练:用集合圈的形式求出16和28的公因数和最大公因数。

5、师:求两个数的公因数和最大公因数还可以用列举法。(出示课件)

6、师:求公因数和最大公因数除了用集合圈和列举法之外,还有一个更简便的方法(出示用短除法求12和18的公因数和最大公因数)

师引出最大公因数是它们共有质因数的乘积。

三、练习

1、用短除法求36和42的最大公因数。

2、生活中的数学:

用这两朵花搭配成同样的花束(正好用完,没有剩余),最多能扎成多少束?

五年级小学数学教案 第21篇

2、5的倍数的特征

【教学内容】

2、5的倍数的特征(教材第9页例1,教材第11页练习三第1~2题)。

【教学目标】

经历自主探索2和5的倍数的特征的过程。

知道2、5的倍数的特征,会判断一个自然数是不是2和5的倍数。

培养学生的观察、猜想、分析、归纳的能力,愿意与同学交流自己发现的结果,增强学习数学的兴趣。

【重点难点】

通过探索发现2、5的倍数的特征,判断一个数是不是2和5的倍数。

【复习导入】

师:同学们,我们一起玩个猜数游戏,好吗?你们任意说出一个自然数,不管是几位数,我都能很快的判断出它是否是2或5的倍数。不信可以试试看。

学生报数,老师答,同时请大家验证。

师:同学们的眼神里闪现出惊讶的目光。你们想知道老师为什么不计算就能马上判断出来吗?学了今天的知识,你们就知道老师猜数的奥秘了。

板书课题:2和5的倍数的特征。

【新课讲授】

探索5的倍数特征

(1)引入百数表。

(2)出示课件:百数表,在这些数中找出5的倍数,写出来。

(3)你们找的数和老师找的相同吗?(课件出示百数表)

(4)观察5的倍数,你有什么发现?把你的发现说给同桌听听。

(5)归纳:谁来概括一下5的倍数到底有什么特征?板书:个位上是0或5的数都是5的倍数

(6)验证:除了这些数以外,其它5的倍数也有这样的特征吗?请举例验证。请你写一个多位数,并且是5的倍数。

(7)过渡:学习了5的倍数的特征有什么好处?师随机在黑板上写一个数,让学生猜猜它是不是5的倍数。

(8)练一练:下面哪些数是5的倍数?

240,345,431,490,545,543,709,725,815,922,986,990。

过渡:那172是几的倍数呢?请同学验证。2的倍数有什么特征,想不想研究?下面我们一起研究2的特征。

探索2的倍数特征

(1)猜一猜:根据研究5的倍数特征的经验,你猜一猜2的倍数可能会有什么特征呢?

(2)课件出示:百数表找出2的倍数。(小组合作找出所有2的倍数)

(3)汇报后,观察2的倍数的特征,看看你刚才的猜测是不是正确。

(4)归纳:2的倍数有怎样的特征?

板书:个位上是0、2、4、6、8的数都是2的倍数。

(5)验证:除了这些数以外,其它2的倍数也有这样的特征吗?请举例验证。

(6)填一填:下面哪些数是2的倍数?1,3,4,11,14,20,23,24,28,31,401,826,740,1000,6431。

让学生独立完成后汇报。

奇数、偶数的再认识

自然数按是不是2的倍数来分可分为奇数和偶数两大类,2的倍数都是偶数,不是2的倍数就是奇数。

那么既是2的倍数又是5的倍数有什么特征呢?

(1)在5的倍数中找出2的倍数;

(2)在2的倍数中找到5的倍数。

比较:判断一个数是不是2或5的倍数,都是看什么?

结论:个位上是0的数,既是2的倍数又是5的倍数。

【课堂作业】

完成教材第9页“做一做” 。

完成教材第11页练习三第1~2题。

【课堂小结】

现在,你们知道老师猜数的奥秘了吗?现在老师说数,请同学们判断出它是不是5或2的倍数。

通过今天的学习,你有什么收获?还有什么问题?

【课后作业】

完成练习册中本课时练习。

板书:
2、5的倍数的特征

个位上是0或5的数都是5的倍数;

个位上是0、2、4、6、8的数都是2的倍数;

个位上是0的数,既是2的倍数又是5的倍数。

通过这节课的教学,使我认识到数学课堂教学活动是一个活泼的、主动的、丰富多彩的活动空间。教学中,我从学生已有的生活经验出发,结合学生的认识规律,给学生提供有趣的情景,激发学生的探求欲望,创设观察、操作、合作交流的机会;
让学生通过动脑、动手、动口,做他们想做的,在做的过程中观察知识,在合作交流中去思考、质疑。充分发挥学生的主体作用,让学生在活动中学习数学,使学生真正感受到学习数学的乐趣。密切联系学生的生活实际,使学生真正领略到数学就在我们身边,生活中处处有数学。

五年级小学数学教案 第22篇

教学目标

1.理解的意义,掌握的计算法则.

2.初步培养学生类推和抽象概括能力.

3.培养学生认真书写、认真计算的好习惯.

教学重点

理解的意义,掌握的计算方法.

教学难点

理解一个数乘以小数的意义和计算方法.

教学过程

一、复习铺垫

(一)说出下面各小数表示的意义是什么.

(二)演示动画:复习

今天我们就利用这个规律学习新知识.

二、指导探索

(一)理解意义

1.出示例2

花布每米元,求买米和米各用多少元,该怎样列式?

2.演示动画:1

3.引导学生理解的意义.

教师提问:怎样求出 米花多少钱?

你是根据哪个数量关系列式的?

单价数量=总价

这个算式和上节课学习的有什么不同?

这个算式表示什么意思?

板书:
求的十分之五是多少.

练习:求米布用多少元该怎样列式?算式所表示的意义是什么?

4.小结

的意义是求这个数的十分之几、百分之几、千分之几

5.练习

(1)说出下面乘法算式的意义.

(2)列出乘法算式.

求21的十分之七是多少?

30的一半是多少?

副标题#e#

(二)学习法则

引导讨论:理解了的意义,下面我们研究怎样计算,同学们可以联系小

数乘整数的计算方法及复习过的因、积变化规律进行尝试、讨论.

1.出示讨论题:

(1)你能把两个因数转化成整数进行计算吗?

(2)转化成整数乘法后,两个因数发生了怎样的变化?积发生了什么变化?

(3)要得到原来的积,应该怎么办?

2.演示动画:2

3.学生独立完成.

4.练习:

5.归纳法则

以上几题因数和积的小数位数有什么关系?

计算法则:计算小数乘法,先按照整数乘法的计算法则算出积,再看因数中一共有

几位小数,就从积的右边起数出几位,点上小数点.

三、反馈练习

(一)根据 直接说出下面各题的积.

= = =

= =

(二)说出下面各题的积有几位小数.

四、质疑调节

(一)这一节课你都学会了什么?

(由学生总结概括的意义和计算法则)

(二)提出自己对所学知识的看法.(包括自己的问题、提醒别人要注意的地方、自身感

受等)组织学生答疑、解疑.

五、巩固发展

(一)不要计算,说出下表各栏的积有几位小数.

副标题#e#

(二)根据第一栏的积,很快地写出后面每栏中两个数的积.

(三)列竖式计算.

(四)一个长方形长是米,宽是米,这个长方形面积是多少平方分米?

六、课后作业

(一)判断下面各个积的小数位数有没有错误.

= =

= =

(二)蒙古牛一般体重是吨,身高是米.新培育的草原红牛体重约是蒙古牛的

倍,身高约是蒙古牛的倍.草原红牛的体重、身高各多少?

七、板书设计

计算小数乘法,先按照整数乘法的计算法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点.

例2.花布每米元,求买米和米各用多少元,该怎样列式?

教案点评:

是小数乘整数知识的扩展和延伸,教学中充分利用已有的知识和技。复习中通过动画演示,从观察整数乘法算式得出积的变化规律

为理解小数乘法中积的小数位数就是两个因数的小数位数的和奠定了基础。

教学中重视引导学生运用转化的思想和知识的迁移规律,在充分理解算理的基础上,逐步总结出小数乘法的计算法则。

推荐访问: